An Exploration of the Influence of Health Related Risk Factors Using Cellular Automata

New England Complex Systems Institute
One-Week Intensive Course: Complex Physical, Biological and Social Systems
MIT, January 6-10, 2003
Supervisor: Prof. Yaneer Bar-Yam

Submitted by:
 - William A. Rush, PhD
 - George Biltz, MD
 - Leonidas Pantelidis
 - Lisa Kim
 - Cherry Ogata
 - Shibata Muneichi, MD

Copyright © 2003 New England Complex Systems Institute. All rights reserved.
An Exploration of the Influence of Health Related Risk Factors Using Cellular Automata

William A. Rush, PhD; George Biltz, MD; Leonidas Pantelidis; Lisa Kim; Cherry Ogata; Shibata Muneichi, MD

Abstract:

An exploration is made of the application of a cellular automata model to population health improvement. The model is presented in the context of the current epidemic of obesity and type 2 diabetes. The focus is on end state health improvement strategy not disease spread. Boundary conditions identified by the model suggest target areas for cost-benefits improvements. The model also helps set general expectations for outcomes given initial conditions.

Objective:

To investigate potential health trends in a population and then to identify the boundary conditions for changes in population health.

Introduction:

There is an increasing incidence of type 2 diabetes with its associated co-morbidities (i.e. cardiovascular, renal and ophthalmologic complications). The prevalence of obesity has almost doubled in the United States in the last 25 years (CDC). Obesity, hypertension, and type 2 diabetes are recognized as the metabolic syndrome.

Obesity is multifactorial. Obesity emerges from the interaction of a pre-disposing genome with an environment of excessive caloric intake and insufficient physical activity. Obesity is a global phenomena with nearly a half billion of the world’s population overweight or obese.

This unhealthy population trend along with an approach that addresses the problem in all affected dramatically increases the cost of healthcare. A model is needed to better understand this decreasing population health, to devise a strategy for health improvement, focus resources for cost benefits, and set expectations the for outcomes.

Methods:

A model of the problem was constructed using a cellular automata approach. Each agent was characterized by an initial state of health (0, 1), and severity of composite risk factors (1 to 8) for becoming unhealthy. These composite risk factors conceptually include diet, physical inactivity, stress, and obesity.
The initial conditions were then set to interact with a complex social influence - peers and environment. This interaction was described by a set of transition rules for each agent (see figure 1).

<table>
<thead>
<tr>
<th>Agent Initial State</th>
<th>Transition Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n_1 > RF)</td>
</tr>
<tr>
<td>1</td>
<td>(n_0 > n_1)</td>
</tr>
</tbody>
</table>

where

0 = unhealthy state
1 = healthy state
\(n_1 \) = the number of healthy neighbors
\(n_0 \) = the number of unhealthy neighbors
RF = composite risk factors

The final state of population health was defined after 100 iterations of the model. Three regions of population health were identified in the final state - all healthy, a heterogeneous population with varying distributions of health and all unhealthy. The boundary conditions for defining these regions were determined by investigating all
possible combinations of initial conditions (800) and then further analyzing areas of interest with multiple runs of the model at selected points. The boundary points were designated by 100% healthy (upper bound) or 0% to 1% healthy (lower bound) (see figure 2).

Figure 2

![Population Health State](image)

Results:

1) Boundary plot

There are three distinct regions in the boundary plot. Above the upper boundary, the final state of the population is a hundred percent healthy, whereas underneath the lower boundary the population is a hundred percent unhealthy. A heterogeneous population in the final state characterizes the region between the two curves.

2) Horizontal scan of a final state

Figure 3 below displays sections of the final state of the model across risk factors at 51% initial health. Sections show varying patterns of population health. This display should be examined from left to right and top to bottom. Starting from a totally healthy population with a risk of 3 (all red) and ending with a totally unhealthy population with the complete risk of 8 (all blue).
3) Figure 4 below is a 3-D plot of initial conditions and final states for the total universe of possibilities within the specifications of the model.

The three-dimensional graphs suggest that the model produces large areas of either all-healthy population or all-unhealthy population. In areas where the model output is neither all-healthy nor all-unhealthy, the relationship between the percentage of the initial population that is healthy and the final outcome becomes variable (multiple runs of the model at each of these levels provide levels of variability based on the distance from the boundary – where the outcome is more variable as the distance from the “phase” boundary increases).
Discussion:
In this model health is a property of a population of agents, rather than a property of the individual agents. The goal was to see if the model could give some actionable insights into describing ways to improve population health. From the model it is apparent that a small decrease in risk factor close to the upper phase transition boundary should result in significant improvement in population health. The same degree of risk factor reduction farther from the upper boundary results in less health improvement. This prediction is consistent with the observed benefit of increased physical activity without weight loss in decreasing myocardial infarction.

Identifying the boundary allows the targeting of areas for greatest cost-benefit improvements and sets expectations for potential degree of improvement.

Other health-related applications of cellular automata modeling describe epidemics or aspects of immunology. Typically epidemic models look for spatio-temporal phenomena. This model is directed towards the final state for intervention strategies.

Conclusions:
Cellular automata modeling can provide valuable insights into managing risk in population health. However, further studies should be conducted to incorporate differing distributions of risk factors across the population. Also further changes might be made to the underlying transition rules.

Bibliography:

5. CDC www.cdc.gov/nchs/

