
Mathematical Models for Explaining the Emergence of

Specialization in Performing Tasks

Daniel Solow and Joesph Szmerekovsky†

Dept. of Operations †Dept. of Mgmt., Marketing and Finance
Case Western Reserve University North Dakota State University
Cleveland, OH 44106 Fargo, ND 58105
e-mail: dxs8@po.cwru.edu
Fax: (216) 368—6250

February 1, 2004

Abstract

In an evolving community consisting of many individuals, it is often the case that
the individuals tend, over time, to become more specialized in performing the tasks
necessary for survival and growth of the community as a whole. The contribution
in this work is a collection of linear and nonlinear mathematical models that provide
insights as to when and why functional specialization emerges in general, rather than
specific, settings. The results from these models, which are based on an evolutionary
approach, apply to communities in which individuals allocate their time in the best
interest of the community as a whole.

1 Introduction

In a community made up of individuals, each of whom can perform any of a number of
necessary tasks, it is often the case that the individuals spend virtually all of their time
performing one, or at most a few, tasks. This property–hereafter referred to as functional
specialization–appears to emerge over time in each of the following settings:

• Living organisms, where the individuals are cells [see, for example, Hawthorne and
Via (2001), Rushworth (2000), and Turken and Swick (1999)].

• Human societies, where the individuals are people [see, for example, Abdel-Rahman
(1996) and Proudman and Redding (2000)].

• Business organizations, where the individuals are the employees [see, for example, Ng
and Yang (1997)].

One example in which specialization is assumed arises in mathematical models for solv-
ing the task-assignment problem in business. For example, given a group of tasks and a
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group of people, each of whom can perform one or more of the tasks, the maximum match-
ing algorithm developed by Edmonds (1965) is designed to determine the maximum number
of people that can be assigned to tasks in such a way that no person is assigned to more
than one task. That is, it is assumed that each person specializes in performing at most
one task. A generalization of this problem is the assignment problem [see surveys by Derigs
(1985), Martello and Toth (1987), and Bertsekas (1991)], in which the objective is to assign
qualified people to at most one task so as to incur the least total cost.

On considering these and other examples, one is led naturally to the question of how
functional specialization arose and why it persists. From an evolutionary point of view, it
could be argued that, through adaptation, functional specialization has been selected and
endures because it has desirable properties that lead to a “fitter” community. That is,
the reason functional specialization emerges and persists is because the community, as a
whole, derives a survival benefit from functional specialization. Based on this assumption,
the contribution of the work here is a collection of models that provides a mathematical
justification for the value of functional specialization to the community and hence the reason
for the emergence of this phenomenon.

Static models–aimed at capturing the concept of fitness of the community–are pre-
sented and analyzed in Section 2. It is first shown how a linear model can fail to explain
the emergence of functional specialization, thus leading to the need for nonlinear models.
Conditions are then provided under which functional specialization arises in certain nonlin-
ear models. In Section 3, functional specialization is shown to emerge in a dynamic model
that captures the fact that the more time an individual spends on a task, the more efficient
that individual becomes at performing the task. It is assumed that the reader is familiar
with the linear programming and transportation problems [see Bazaraa et al. (1990)], and
nonlinear programming problems [see Bazaraa et al. (1993)].

2 Static Models in which Functional Specialization Emerges

In this section, static linear and nonlinear models are proposed for studying the emergence
of functional specialization. These models are designed to reflect a general, rather than a
specific, community so as to have the broadest possible applicability. To that end, consider
a community made up of N individuals, each of whom can perform any of T tasks (usually
N >> T ). Functional specialization is related to the amount of time each individual devotes
to each task. To model the time commitments of the individuals, define the following
variables:

xit = the fraction of time that individual i devotes to performing
task t (i = 1, . . . , N ; t = 1, . . . , T ).

Of course, the sum of the fractions of time an individual spends on all tasks must be 1.
Thus, the variables must satisfy the following constraints:

T

t=1

xit = 1, i = 1, . . . , N (1)

xit ≥ 0, all i and t. (2)
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For the community to survive, it is assumed that the values of the variables x = (xit)
need to satisfy P survival constraints, each of the form gj(x) ≥ 0, and from which the
community then receives a total benefit of f(x), which is a measure of the fitness of the
community. From an evolutionary point of view, the objective is to determine values for
the variables x = (xit) that achieve the fittest community, that is, the largest value of f(x),
while satisfying the survival constraints gj(x) and also the constraints in (1) and (2). Thus,
the proposed model is:

max f(x)

s.t. gj(x) ≥ 0, j = 1, . . . , P

T

t=1
xit = 1, i = 1, . . . ,N

xit ≥ 0, all i and t.

(3)

An implicit assumption in the model in (3) is that the optimal time commitments of
the individuals are chosen so as to benefit the community as a whole, rather than the
individuals. Such an assumption, while not valid in all communities, is known to occur in
some communities, such as the following:

• A community in which the benefits and survival of the individuals are linked closely
with those of the community. For example, in early human clans, the survival of an
individual depended almost entirely on the survival of the clan as a whole. Another
example might be an ant colony or the human body and its organs.

• A community in which there is an internal or external pressure on the individuals to
perform in the interest of the community. For example, a society with a benevolent
dictator or a leader that elicits such behavior from the individuals or a social structure
in which societal goals outweigh individual goals. In a supply chain, Lamb et al. (1996)
suggest that “channel captains” use their dominant positions to alter behavior of
individual members of the supply chain (see Gaski (1984) for an appropriate literature
review and Munson et al. (1999) for a discussion of power and conflict in supply
chains).

• A community in which incentives are such that the individuals act in the best interest
of the community. Such examples of biological systems are given in Buss (1987). As
another example, consider a company in which employees are given incentives so that
individual benefit and corporate benefit coincide. More recently, much research has
been done on the use of incentives to coordinate the supply chain, that is, to get the
manufacturers, wholesalers, and retailers to act in such a way as to maximize profits
for the entire supply chain, rather than for each individual agent [see, for instance,
Munson and Rosenblatt (2001), Mantrala and Raman (1999) and Emmons and Gilbert
(1998)].

For such communities, the general model in (3) is applicable. In contrast, this model
is not appropriate for communities in which the individuals act in their own best interest
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rather than in the interest of the community as a whole. Much literature is devoted to such
communities. For example, the concept of a Nash equilibrium in game theory [see Yuan et al.
(1998) and also Borgers (2001) for a survey of books on evolutionary games] is predicated
on the assumption that each player chooses a strategy that maximizes their individual
profit. Also, in many supply chain settings, the manufacturers, wholesalers, and retailers
are assumed to act in their own self interest [see, for example, Lee (2001) and Fulkerson
and Staffend (1997)]. Another example occurs in the economic theory of international trade
where comparative advantages cause different countries to specialize in the export of certain
goods [see, for example, Yi (2003) and Evenett and Keller (2002)]. Even when individuals
act in their own interest, it could be argued that unless such actions are in the long-term
interest of the community, the community will not survive. Nevertheless, to study how
functional specialization emerges in communities where the individuals act in their own
interest might best be done with models different from the ones used here and is outside
the scope of this research.

For communities to which the model in (3) is appropriate, one might first consider the
simplest case consisting of a linear objective function and linear survival constraints. The
drawback of such a model is presented next.

2.1 A Linear Model and Its Drawbacks

To create a linear objective function, let

cit = the (known) benefit to the community when individual i de-
votes 100% of its time to task t (i = 1, . . . , N ; t = 1, . . . , T ).

Assuming that the benefits are scaled linearly and that the total benefit to the community
is the sum of the individual contributions, the objective function in (3) becomes:

max
N

i=1

T

t=1

citxit (4)

Linear survival constraints arise when, for example, it is assumed that the total amount
of time devoted by all individuals to a task t must be at least a specified amount, say, Lt.
Assuming that each individual has K time units available , the survival constraints are:

K
N

i=1

xit ≥ Lt or
N

i=1

xit ≥ lt = Lt/K for t = 1, . . . , T . (5)

The constraints in (5) are the simplest possible linear constraints and are used here as a
starting point. More general linear constraints of the form N

i=1 aitxit ≥ lt are considered
in the dynamic model in Section 3.

Combining the various pieces in (4), (5), (1), and (2), the goal is to determine values
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for the variables xit so as to solve the following linear programming problem (LP):

max
N

i=1

T

t=1
citxit

s.t.
N

i=1
xit ≥ lt, t = 1, . . . , T

T

t=1
xit = 1, i = 1, . . . , N

xit ≥ 0, all i, t

(6)

Functional specialization would be indicated if each individual spends 100% of its time
on a single task. That is, functional specialization emerges if, in the optimal solution to
problem (6), for each individual i, there is exactly one task s such that xis = 1 and for each
other task t = s, xit = 0. As shown in Appendix A, it is possible to convert problem (6) to
a balanced transportation problem [see Bazaraa et al. (1990)] for which it is known that the
optimal solution obtained by the simplex algorithm consists entirely of the integers 0 and
1, provided that all lt are integers. Alternatively, it is not hard to show that the constraint
matrix associated with the standard-form version of (6) is totally unimodular [see Ahuja et
al. (1993)] and so every basic feasible solution is integer.

Unfortunately, the LP model in (6) and the fact that the optimal solution obtained by
the simplex algorithm is integer is not a compelling argument that functional specialization
necessarily emerges. This is because, while it is true that the simplex algorithm produces an
optimal integer solution–thus indicating functional specialization–there can, and generally
will, be other optimal solutions that contain fractional values for the variables–meaning
that the community can do just as well without functional specialization. To illustrate,
consider the following specific instance of the foregoing LP in which there are N = 3
individuals and T = 2 tasks:

maximize x11 + x21 + x31 + x12 + x22 + x32

s.t. Task Requirements
x11 + x21 + x31 ≥ 1 (Task 1)
x12 + x22 + x32 ≥ 1 (Task 2)

Individual Fractions Sum to 1
x11 + x12 = 1 (Individual 1)
x21 + x22 = 1 (Individual 2)
x31 + x32 = 1 (Individual 3)

all xit ≥ 0

(7)

The following optimal solution, in which Individuals 1 and 2 specialize in Task 1 and
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Individual 3 specializes in Task 2, provides an overall benefit of 3 to the community:

x11 = 1, x12 = 0
x21 = 1, x22 = 0
x31 = 0, x32 = 1

However, the optimal solution in which each of the three individuals spends half of the
time on each of the two tasks also provides the same benefit of 3 to the community and is
obtained without any specialization.

2.2 Nonlinear Models that Exhibit Functional Specialization

For functional specialization necessarily to emerge, it must be the case that every optimal
solution to (3) is integer. This would happen, for example, when the linear programming
model in (6) has a unique optimal solution, that is, when the associated dual problem
is nondegenerate [see Bazaraa et al. (1990)]. An alternative explanation for functional
specialization to emerge is when the objective and/or survival constraints of the model in
(3) are nonlinear functions that possess certain properties. Such models, together with
conditions under which every optimal solution is integer, are presented now.

2.2.1 A Model with a Nonlinear Objective Function

Consider the following model, in which the goal is to find values for the variables x = (xit)
so as to:

max f(x)

s.t.
N

i=1
xit ≥ lt, t = 1, . . . , T

T

t=1
xit = 1, i = 1, . . . ,N

xit ≥ 0, all i, t

(8)

In the event that the objective function f is convex, it is well known [Bazaraa et al.
(1993)] that (8) has an optimal solution at an extreme point of the feasible region. Fur-
thermore, because of the special structure of the constraints in the foregoing model, every
extreme point of the feasible region is integer. It follows that there is an optimal integer
solution at an extreme point of (8). However, as mentioned in Section 2.1, in general there
can also be optimal solutions that are not integer. A class of functions that ensures that
every optimal solution to (8)–and other more general models–is integer is described next.
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In so doing, the following notations are used:

S = {y ∈ RT :
T

t=1
yt = 1 and yt ≥ 0 for t = 1, . . . , T}.

et = the vertex of S with all 0’s except for a 1 in position t.

SN = S × · · · × S = the N -fold Cartesian product of S.

xit = the fraction of time that individual i devotes to performing
task t (i = 1, . . . , N ; t = 1, . . . , T ).

xi = (xi1, . . . , xiT ) ∈ S = the fractions of time devoted by individ-
ual i to each of the T tasks (i = 1, . . . ,N).

x = N × T vector of variables (x1, . . . ,xN ) ∈ SN .

2.2.2 Sublinear Functions

In this section, a property of three different types of functions is identified and subsequently
used to ensure that every optimal solution to a nonlinear programming model is integer.
The property is first defined as follows for a function h : [0, 1]→ R1 (see Figure 1):

Definition 1 A continuous function h : [0, 1]→ R1 is sublinear if and only if the graph
of h lies strictly below the line segment connecting h(0) and h(1), that is, for all 0 < x < 1,
h(x) < (1− x)h(0) + xh(1).

Example 1: Any strictly convex continuous function on R1, such as h(x) = x2, is sublinear.
This is because, by definition, a strictly convex function h satisfies the property that for all
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y, z ∈ R1 with y = z and for all 0 < t < 1, h((1− t)y+ tz) < (1− t)h(y) + th(z) and so, for
y = 0, z = 1, and t = x, it follows that h(x) = h((1− x)0 + x(1)) < (1− x)h(0) + xh(1).

A natural generalization of the sublinear property to a function h : S → R1 is that the
graph of the function on the interior of S lies strictly below the plane through the points
(et, h(et)), t = 1, . . . , T . Noting that a point z ∈ S can be expressed as a convex combination
of the extreme points et of S leads to the following definition.

Definition 2 A continuous function h : S → R1 is sublinear if and only if for all
z = (z1, . . . , zT ) ∈ S with at least one zt with 0 < zt < 1, it follows that

h(z) = h
T

t=1

zte
t <

T

t=1

zth(e
t).

Any strictly convex continuous function on RT when restricted to S is sublinear, as is
the following function h : S → R1.

Example 2: If ht : [0, 1]→ R1 are sublinear functions such that for each t = 1, . . . , T ,
ht(0) = a and ht(1) = b, then the following function h : S → R1 is sublinear:

h(z) =
T

t=1

ht(zt).

This is because if z ∈ S has at least one zt with 0 < zt < 1, then, noting that each
h(et) = (T − 1)a+ b, it follows that

h(z) =
T

t=1
ht(zt)

=
{t:0<zt<1}

ht(zt) +
{t:zt=0}

ht(zt)

<
{t:0<zt<1}

[(1− zt)ht(0) + ztht(1)] +
{t:zt=0}

(1− zt)ht(0)

=
T

t=1
(1− zt)ht(0) +

{t:0<zt<1}
ztht(1)

≤ (T − 1)a+ b

=
T

t=1
zth(e

t).

If you think of the value of h(z) as the benefit an individual derives from making time
allocations z ∈ S, as is done from here on, sublinearity provides the basis for establishing
functional specialization because a sublinear function ensures that the individual achieves
maximum benefit by, and only by, specializing in exactly one task, as shown in the follow-
ing lemma whose proof (along with proofs of all other lemmas and theorems) is given in
Appendix B.
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Lemma 1 If h : S → R1 is sublinear, then h achieves its maximum value of c at, and only
at, a vertex of S. That is, for all z ∈ S with h(z) = c, there is a component t such that
zt = 1, or equivalently, if z ∈ S has fractional values, then h(z) < c.

However, recall that the domain of the objective function f of the community is SN

rather than S, thus giving rise to the need for the following final type of sublinear function.

Definition 3 A function h : SN → RN is decomposable if and only if there are func-
tions hi : S → R1, for i = 1, . . . , N , such that for all x = (x1, . . . ,xN ) ∈ SN , h(x) =
(h1(x1), . . . , hN (xN )).

Definition 4 A decomposable continuous function h : SN → RN , in which h(x) = (h1(x1),
. . ., hN (xN )), is sublinear if and only if for each i = 1, . . . ,N , hi : S → R1 is sublinear.

The component functions h1, . . . , hN in Definition 4 should be thought of as the benefit
functions of the N individuals in the community.

With the concept of sublinear functions, it is now possible to establish that functional
specialization necessarily emerges in certain nonlinear models, that is, that every optimal
solution is integer.

2.2.3 A Model with Nonlinear Objective Function and Constraints

In addition to a nonlinear objective function f(x), suppose that the P survival constraints
are also nonlinear and have the form gj(x) ≥ 0, so:

g : SN → RP = the P survival constraints that the variables must satisfy.

f : SN → R1 = the benefit the community derives from the time allocations
of all individuals.

The objective now is to find values for the variables x = (xit) so as to solve the following
nonlinear programming problem (NLP):

max f(x)
s.t. g(x) ≥ 0

x ∈ SN
(9)

The next theorem provides conditions under which functional specialization necessarily
emerges in the optimal solution to the NLP in (9), that is, conditions under which every
optimal solution to the NLP is integer. That theorem uses the following definitions.

Definition 5 For vectors y, z ∈ RN , by y z it is meant that:

(a) For each i = 1, . . . , N , yi ≤ zi and
(b) There is an integer j with 1 ≤ j ≤ N such that yj < zj.

Definition 6 The function f : SN → R1 is specializable if and only if there is a sublinear
function h : SN → RN such that for all x,y ∈ SN with h(x) h(y), f(x) < f(y).
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A specializable objective function f for a community means that if all individuals with time
allocations y receive at least as much personal benefit as they do with time allocations x,
and at least one individual is strictly better off with y, then the community as a whole is
better off with y rather than x.

The next theorem establishes that functional specialization necessarily emerges when
the objective function of the community is specializable, provided that the time allocations
that maximize each individual’s benefit satisfy the survivability constraints.

Theorem 1 If the objective function f of the NLP in (9) is specializable and the time
allocations x̄ in which each individual achieves the maximum personal benefit satisfies the
survivability constraints of the NLP, then any optimal solution results in specialization.

Theorem 1 provides conditions under which functional specialization emerges and, in
fact, requires the existence of a particular feasible solution, namely, x̄. If such a feasible
solution does not exist, it may be necessary for individuals to work at more than one task to
satisfy the survivability constraints. Even if the conditions of Theorem 1 hold, the theorem
does not indicate which tasks the individuals specialize in. The next theorem shows that the
time allocations in the feasible solution in the hypotheses of Theorem 1 indicate the tasks
in which the individuals specialize, provided that the objective function f of the community
is continuous.

Theorem 2 If f is specializable and continuous on the extreme points of SN and the time
allocations x∗ in which each individual i achieves the maximum personal benefit satisfies
the survivability constraints of the NLP, then an optimal solution to the NLP is for each
individual i to specialize in that task that maximizes the personal benefit of individual i.

Theorem 2 means that the solution of the NLP in (9) is for each individual to specialize
in a task that provides that individual with the maximum personal benefit, provided that
doing so collectively satisfies the survivability constraints. These results are illustrated in
the following example.

Example 3: For each i and t, let hit : [0, 1]→ R1 be sublinear functions that represent
the benefit individual i derives from allocating the fraction xit to task t (for example,
hit(xit) = x

2
it). The continuous community-benefit function

f(x) =
N

i=1

T

t=1

hit(xit)

satisfies the hypotheses of Theorems 1 and 2. To see that this is so, consider the individual
benefit functions hi : S → R1 defined by

hi(z) =
T

t=1

hit(zt), for i = 1, . . . , N.

Now each hi is sublinear (see Example 2 in Section 2.2.2) and so the decomposable function
h : SN → RN defined by h(x) = (h1(x1), . . . , hN (xN )) for each x ∈ SN is also sublinear.
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Also, f is specializable, that is, for all x,y ∈ SN with h(x) h(y), f(x) < f(y). This
is because, if x,y ∈ SN with h(x) h(y), then, for each individual i = 1, . . . , N ,

T

t=1

hit(xit) = hi(xi) ≤ hi(yi) =
T

t=1

hit(yit), (10)

with strict inequality holding for at least one individual i. It then follows by summing (10)
over i that

f(x) =
N

i=1

T

t=1

hit(xit) <
N

i=1

T

t=1

hit(yit) = f(y).

Assuming that the time allocations x∗ in which each individual i achieves maximum personal
benefit satisfies the survivability constraints, by Theorem 1, any optimal solution exhibits
functional specialization. Then, by Theorem 2, the specialization indicated by x∗ is optimal
for the NLP.

All of the models presented so far are static and therefore remain the same over time.
A dynamic model is presented now for studying the emergence of functional specialization
as the system changes over time.

3 A Dynamic Model in which
Functional Specialization Emerges

The proposed dynamic model incorporates the fact that the more time an individual spends
on a task, the better that individual becomes at performing that task. This is analogous
to a neural network in which the pathways are reinforced by repeated use [see Muller and
Reinhardt (1991)]. Thus, let

Akit = the (known) productive fraction of each time unit that indi-
vidual i puts into task t in time period k (i = 1, . . . ,N ;
t = 1, . . . , T ; k = 0, 1, . . .).

A = the set of all N × T matrices A such that for all i and t,
0 ≤ Ait ≤ 1. (Any such matrix is called an efficiency matrix).

The closer the value Akit is to 1, the more efficient individual i is at performing task t.
Moreover, the value Akitxit represents the effective number of time units individual i devotes
to task t in period k.

For the community to survive, it is assumed that the total number of effective time units
devoted by all individuals to each task t in period k must be at least a specified amount, lt.
Thus, in period k, the survival constraints–which are a generalization of those in (5)–are:

N

i=1

Akitxit ≥ lt, for t = 1, . . . , T .

Furthermore, let the function f(x) be the benefit to the community from the time
allocations x of the individuals. Putting together the pieces, the goal is to determine, for
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each time period k, values for the variables x = (xit) so as to solve the following nonlinear
programming problem, denoted by NLP(Ak):

max f(x)

s.t.
N

i=1
Akitxit ≥ lt, for t = 1, . . . , T [NLP(Ak)]

x ∈ SN

(11)

An optimal solution xk to NLP(Ak) need not result in specialization. However, the values
of xk = (xkit) are used now to change the values of A

k
it to reflect the fact that individuals

who spend time on a task become more efficient at that task. As a starting point that
allows appropriate analysis, we begin by assuming that if individual i spends 100% of its
time on task t in period k (xkit = 1), then the value of Akit increases by some fraction F
(0 < F < 1) of the way to 1. More generally, if individual i spends the fraction xkit of its
time on task t in period k, then Akit increases by the fraction x

k
itF of the way to 1, so,

Ak+1it = Akit + x
k
itF (1−Akit). (12)

Generalizations and extensions to this learning formula are discussed in Section 4. On the
basis of the update formula in (12), the following dynamic model is proposed:

A Dynamic Nonlinear Programming Model

Step 0: Let A0 ∈ A be a given efficiency matrix for which NLP(A0) is feasible and set
k = 0.

Step 1: Let xk be an optimal solution to NLP(Ak).

Step 2: Use xk and the update formula in (12) to compute the matrix Ak+1. Set k = k+1
and go to Step 1.

The goal is to provide conditions under which the efficiency matrices Ak generated
by this process converge to an efficiency matrix A∞ for which functional specialization
necessarily emerges–that is, every convergent subsequence of (xk) converges to an integer
optimal solution of NLP(A∞). The first step in this direction is to ensure that it is always
possible to obtain an optimal solution to NLP(Ak) in Step 1, as established in the next
theorem.

Theorem 3 If NLP(A0) is feasible and f is continuous on SN , then for each k = 0, 1, . . .,
NLP(Ak) has an optimal solution, xk.

From here on, it is assumed that NLP(A0) is feasible and that xk is optimal for NLP(Ak)
and generates Ak+1 according to (12). The next theorem establishes that the efficiency ma-
trices Ak converge, element by element, to an efficiency matrix A∞ for which the associated
NLP(A∞) has an optimal solution if f is continuous on SN .
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Theorem 4 If NLP(A0) is feasible and f is continuous on SN , then there is a matrix
A∞ ∈ A such that for each i and t, A∞it = limk→∞Akit and NLP(A∞) is optimal.

The issue now is what is happening to the sequence (xk) of optimal solutions to NLP(Ak).
Because (xk) belongs to the compact set SN , there is a subsequence K and a point x∗ ∈ SN
such that (xk) converges to x∗ as k ∈ K. The next theorem establishes that x∗ is an optimal
solution to NLP(A∞).

Theorem 5 If f is continuous on SN and the sequence of efficiency matrices (Ak) con-
verges element by element to an efficiency matrix A∞ ∈ A and for each k = 0, 1, . . ., xk

solves NLP(Ak), then any convergent subsequence of (xk) converges to an optimal solution
x∗ of NLP(A∞).

For functional specialization to emerge, it is necessary to establish that x∗ is integer.
This is accomplished by showing that, under suitable conditions on f , x∗ is an optimal
extreme point of the following Nonlinear Transportation Problem, denoted by NLTP:

max f(x)

s.t.
N

i=1
uitxit ≥ lt, for t = 1, . . . , T (NLTP )

x ∈ SN

(13)

where uit is defined as follows:

uit =
1, if x∗it > 0
0, if x∗it = 0

(14)

It is now possible to show that, with no conditions on f other than continuity, x∗ is optimal
for NLTP. To that end, the following lemma is used.

Lemma 2 If, in the optimal solution x∗, an individual i spends any positive fraction of
time on a task t (that is, if x∗it > 0), then, in the limit, that individual is 100% efficient at
task t (that is, A∞it = 1).

Theorem 6 If f is continuous on SN and x∗ is the optimal solution for NLP(A∞) in
Theorem 5, then x∗ is optimal for NLTP.

Although Theorem 6 establishes that x∗ is optimal for NLTP, x∗ need not result in
specialization. For example, consider the following linear programming problems–denoted
by LP(Ak)–in which the community accrues a benefit from each task t in each period that
is equal to ct times the number of time units dedicated to task t:

max
T

t=1
ct

N

i=1
xit

s.t.
N

i=1
Akitxit ≥ lt, for t = 1, . . . , T [LP(Ak)]

x ∈ SN

(15)

13



Although it can be shown that the limiting problem LP(A∞) has an optimal solution that
results in specialization, a convergent subsequence of optimal solutions to LP(Ak) need not
converge to such an optimal solution.

Nonlinearity is needed to obtain such a result. The next theorem provides a sufficient
condition on f to ensure that x∗ is integer and hence that functional specialization emerges
from the solutions to the dynamic model.

Theorem 7 If f is continuous and strictly convex on SN , then every optimal solution to
NLTP, and hence x∗, results in specialization.

Theorem 7 establishes the emergence of functional specialization from the solutions to
NLP(Ak) in the dynamic model when f is strictly convex. This is because any convergent
subsequence of optimal time allocations for NLP(Ak) approaches x∗, which is an optimal
integer solution to both NLTP and NLP(A∞). Note that there could be non-integer opti-
mal solutions to NLP(A∞), however, because of the way in which the system evolves, under
the conditions of Theorem 7, no convergent subsequence of optimal solutions to NLP(Ak)
will converge to such a non-integer solution. One might ask what would happen if the
dynamic model began with B0 = A∞ and a non-integer optimal solution, y0, to NLP(B0)
were obtained. In this case, the dynamic model results in a sequence of matrices, (Bk), and
corresponding optimal solutions, yk, to NLP(Bk) for which, under the conditions of Theo-
rem 7, any convergent subsequence of (yk) converges to a solution y∗ in which functional
specialization emerges. In other words, under the conditions of Theorem 7, functional
specialization is an inevitable outcome of the dynamic model, regardless of the starting
conditions.

4 Extensions and Future Research

In the dynamic model in Section 3, a special form of learning is used, namely, the update
formula in (12). A natural question to ask is whether functional specialization emerges
when other forms of learning apply (see Chase et al. (1998) for a discussion of learning
curves and a bibliography). To that end, define L : Rn

2 ×A→ A as a learning function
that associates to each time-allocation vector x ∈ Rn2 and efficiency matrix A ∈ A, the
updated efficiency matrix L(x, A) ∈ A. Thus, if Ak ∈ A is the efficiency matrix in period
k and xk is an optimal solution to NLP(Ak), then the efficiency matrix in period k + 1 is
Ak+1 = L(xk, Ak). It is not hard to show that all of the results in Section 3–including
the emergence of functional specialization–hold when the learning function satisfies the
following properties [as does the learning function defined in (12)]:

(a) (Monotonicity) For all time allocations x ∈ Rn
2
and efficiency matrices A ∈ A,

L(x, A) ≥ A.
(b) (Continuity) L is continuous in its arguments.

(c) (No Improvement) If the time allocations x ∈ Rn2 and the efficiency matrix A ∈ A
satisfy A = L(x, A), then for all individuals i and for all tasks t, either individual i
spends no time on task t (that is, xit = 0) or individual i is 100% efficient at task t
(that is, Ait = 1).

14



In the update formula in (12) as well as in the foregoing conditions on the learning
function, it is assumed that individuals never get worse at tasks and thus the matrices Ak

are monotonically non-decreasing. A more realistic assumption is that if an individual i
spends no time on task t in period k (xkit = 0), then the value of A

k
it decreases in the next

period by a fraction F of the way to 0. In this case, for example, the update formula
becomes:

Ak+1it =

⎧⎪⎨⎪⎩
Akit + xitF (1−Akit), if xkit > 0

(1− F )Akit, if xkit = 0
(16)

With (16), Theorem 3 in Section 3 still applies–meaning that as long as NLP(A0) is
feasible and f is continuous on SN , each subsequent NLP(Ak) has an optimal solution.
However, the remaining theorems in Section 3 need not hold. For example, Theorem 4 is
no longer valid because the sequence (Ak) of efficiency matrices is no longer monotone. It
is, however, possible to prove the following theorem.

Theorem 8 If NLP(A0) is feasible and f is continuous on SN , then there is an effi-
ciency matrix A∞ ∈ A and a subsequence K such that for each individual i and task t,
A∞it = limk∈K Akit, the sequence (Akit)k∈K is monotone, and NLP(A∞) is optimal.

Theorem 5 in Section 3 holds for the subsequence K in Theorem 8. That is, by defining,

for each j = 1, 2, . . ., the matrix Bj to be the jth matrix in the subsequence (Ak)k∈K ,
the hypotheses, and hence the conclusion, of Theorem 5 apply to the sequence of matrices
(Bj). Thus, any convergent subsequence of optimal solutions for NLP(Bj) converges to an
optimal solution of NLP(B∞ = A∞). However, letting yj , for j = 1, 2, . . . be an optimal
solution for NLP(Bj), it is an open question as to whether any convergent subsequence of
(yj) converges to an optimal solution y∗ for NLP(B∞) that results in specialization. In
particular, no suitable version of Lemma 2 has been found as yet for this case. Nonetheless,
repeated simulations with a linear objective function have resulted in the emergence of
functional specialization in this modified dynamic model.

Additional mathematical difficulties manifest themselves in the dynamic model when
the update formula includes a critical fraction of time, b (or bit), for which an individual
who spends at least the fraction b of time at a task gets proportionately better at that task
and an individual who spends less than the fraction b gets proportionally worse at that
task. In this case, the update formula becomes:

Ait =

⎧⎪⎪⎨⎪⎪⎩
Ait +

xit−b
1−b F (1−Ait), if xit ≥ b

1− b−xit
b F Ait, if xit < b

(17)

With (17), even if NLP(A0) is feasible, a subsequent NLP(Ak) can become infeasible
and so the dynamic model is no longer well defined. To illustrate, consider the following
numerical example in which two individuals must allocate their time among two different
tasks so as to maximize a linear objective function. For the initial problem, NLP(A0), it
is assumed that each individual is 100% efficient at both tasks. The problem NLP(A0)
therefore is:

15



maximize x11 + x21 + x12 + x22

s.t. x11 + x21 ≥ 1
x12 + x22 ≥ 1

x11 + x12 = 1
x21 + x22 = 1

all xit ≥ 0

(18)

The following solution, in which each individual spends one half of its time on Task 1
and one half of its time on Task 2, is optimal for this problem:

x11 = 1/2, x21,= 1/2
x12 = 1/2, x22,= 1/2

However, if F = 1 and b = 2/3 is the minimum time requirement to maintain performance
on a particular task then, using the update formula in (17), the following problem, NLP(A1),
is easily seen to be infeasible:

maximize x11 + x21 + x12 + x22

s.t. 5
6x11 +

5
6x21 ≥ 1

5
6x12 +

5
6x22 ≥ 1

x11 + x12 = 1
x21 + x22 = 1

all xit ≥ 0

(19)

Another direction for future research is to extend the dynamic model in Section 3 to
allow for an increasing number of tasks, individuals, and minimum survival requirements
(lt) over time. In particular, at what rate can these parameters increase so that functional
specialization still emerges?

As a final direction for future research, recall that the models developed here are based
on the assumption that the optimal time allocations are made on the basis of what is best
for the community. A different approach is needed when the individuals allocate their time
so as to maximize their own interests rather than those of the community as a whole. These
and other related questions are currently under investigation.

Conclusion

In this work, linear and nonlinear static and dynamic models are proposed for studying the
emergence of functional specialization. These models apply to a community in which the
individuals allocate their time in the best interest of the community. It is shown how a linear
model is inadequate to account for the emergence of functional specialization. Rather, it is
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nonlinearity in the objective function that provides an explanation for this phenomenon. In
particular, sufficient conditions are provided on a nonlinear objective function under which
functional specialization necessarily emerges in a static model and also in a dynamic model
that allows for the individuals to get better at tasks over time.

17



Appendix A

In this appendix, it is shown how to transform the linear programming model (6) in Section
2.1 to a balanced transportation problem. Assuming that N > t lt, the transformation
is accomplished by creating a single dummy task, T + 1, with a requirement of lT+1 =
N − T

t=1 lt. For each individual i, set the value of ciT+1 = max{cit : 1 ≤ t ≤ T}. Then,
the balanced transportation problem is:

max
N

i=1

T+1

t=1
citwit

s.t.
N

i=1
wit = lt, t = 1, . . . , T + 1

T+1

t=1
wit = 1, i = 1, . . . ,N

wit ≥ 0, all i, t

(20)

The next two theorems establish that any optimal solution to (6) provides an optimal
solution to (20) with the same objective function value and vice versa.

Theorem 9 If x is an optimal solution for (6) with objective function value c(x), then
there is an optimal solution to (20) whose objective function value is at least c(x).

Proof. The key observation is that, in the optimal solution to (6), for any task t =
1, . . . , T for which i xit > lt and for any individual i = 1, . . . , N with xit > 0, any amount
of xit up to lt − i xit can be diverted from task t to task T + 1 in (20) without affecting
the optimal objective function value, c(x). To see that this is so, for any individual i, let j
be an integer for which cij = maxt=1,...,T {cit}. Then, for a task t for which i xit > lt and
any individual i with xit > 0, it must be that cit = cij , for otherwise, it would be possible
to create a better feasible solution for (6) than x by reducing xit by some positive amount
δ and increasing the value of xij by δ.

On the basis of the foregoing observation, a feasible solution to (20) is constructed by
diverting, from each task t for which i xit > lt and some of the individuals i, some amount
of xit to task T + 1. To specify these amounts, for any task t for which i xit > lt, define

i(t) = the largest integer for which
i(t)

i=1
xit < lt

yit =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xit, for i = 1, . . . , i(t)

lt −
i(t)

i=1
xit, for i = i(t) + 1

0, for i = i(t) + 2, . . . , T

and wit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yit, for t = 1, . . . , T

1−
T

j=1
yij , for t = T + 1
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The foregoing values of wit are feasible for (20) and provide at least as good an objective
function value as c(x) for (6) because any amount of xit that is diverted to task T+1 accrues
a benefit of ciT+1 = max{cit : 1 ≤ t ≤ T} ≥ cit. Thus, the optimal objective function value
of (20) is at least as good as c(x). 2

Theorem 10 If w is an optimal solution for (20) with objective function value c(w) then
there is an optimal solution to (6) whose objective function value is at least c(w).

Proof. For each i = 1, . . . , N , let j(i) be the first integer for which cij(i) = max{cit : 1 ≤
i ≤ N}. Then the following feasible solution x to (6) has the same objective function value
as c(w):

xit =

⎧⎪⎨⎪⎩
wit + wiT+1, if t = j(i)

wit if t = j(i)

Thus, the optimal objective function value of (6) is at least as good as c(w). 2

Appendix B

All lemmas and theorems in this work are proved here.

Proof of Lemma 1 in Section 2.2.3. Because h is a continuous function on the nonempty
compact set S, h achieves its maximum value at a point in S. So, let z ∈ S be such that
h(z) = c = max{h(x) : x ∈ S}. To see that z must be an extreme point of S, suppose not.
Then there is a component t such that 0 < zt < 1. But then by the fact that h is sublinear,
it follows that

c = h(z) = h
T

t=1

zte
t <

T

t=1

zth(e
t) ≤

T

t=1

ztc = c.

This contradiction proves the lemma. 2

Proof of Theorem 1 in Section 2.2.3. Let x∗ ∈ SN be an optimal solution for (9). It
will be shown by contradiction that x∗ is integer. So, suppose that x∗ has fractional values.
Then there are integers i and t with 1 ≤ i ≤ N and 1 ≤ t ≤ T such that 0 < x∗it < 1. A
contradiction is reached by showing that f(x∗) < f(x̄). To that end, define

F = { 1 ≤ i ≤ N : there is a t with 1 ≤ t ≤ T such that 0 < x∗it < 1} = ∅.
Because f is specializable, there is a sublinear function h : SN → RN such that for all
x,y ∈ SN with h(x) h(y), f(x) < f(y). Using the sublinearity of h and letting ci =
max{hi(z) : z ∈ S} = hi(x̄i) for each i = 1, . . . , N , it follows from Lemma 1 applied to each
hi that

hi(x
∗
i ) < ci = hi(x̄i), for each i ∈ F

hi(x
∗
i ) ≤ ci = hi(x̄i), for each i ∈ F .

(21)

In other words, (21) says that x∗ and x̄ are two vectors in SN for which h(x∗) h(x̄). The
hypothesis now ensures that f(x∗) < f(x̄) and so x∗ is not optimal. This contradiction
establishes the claim that all optimal solutions are integer. 2
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Proof of Theorem 2 in Section 2.2.3. Once x∗ is shown to be optimal, Theorem 1
ensures that x∗ is integer. So, to see that x∗ is optimal, let x be any feasible solution for
the NLP. It will be shown that f(x) ≤ f(x∗).
Case 1. The feasible solution x has a fractional value. In this case, define

F = { 1 ≤ i ≤ N : there is a t with 1 ≤ t ≤ T such that 0 < xit < 1} = ∅.

Because f is specializable, there is a sublinear function h : SN → RN such that for all
x,y ∈ SN with h(x) h(y), f(x) < f(y). Using the sublinearity of h and letting ci =
max{hi(z) : z ∈ S} = hi(x̄i) for each i = 1, . . . , N , it follows from Lemma 1 applied to each
hi that

hi(xi) < ci = hi(x
∗
i ), for each i ∈ F

hi(xi) ≤ ci = hi(x∗i ), for each i ∈ F .
(22)

In other words, (22) says that x and x∗ are two vectors in SN for which h(x) h(x∗). The
hypothesis now ensures that f(x) < f(x∗).

Case 2. The feasible solution x is integer. Note that the argument in Case 1 does not
apply because F = ∅. So, consider a sequence of points (xk) in SN , each of which has
a fractional value and for which the sequence converges to x. Repeating the argument in
Case 1 for each k = 1, 2, . . ., it follows that h(xk) h(x∗). Thus, by the hypothesis, for
each k = 1, 2, . . .,

f(xk) < f(x∗). (23)

The fact that f(x) ≤ f(x∗) now follows by taking the limit as k →∞ on both sides of (23)
and using the continuity of f at the extreme point x.

The proof is now complete because it has been shown that for any feasible solution x,
f(x) ≤ f(x∗) and so x∗ is optimal. 2

Proof of Theorem 3 in Section 3. The statement is true for k = 0 because, by hypothe-
sis, NLP(A0) is feasible. Furthermore, the constraints x ∈ SN together with the continuity
of f ensure that NLP(A0) has an optimal solution.

Assume now that the statement is true for k and let xk be an optimal solution for
NLP(Ak). Then xk is feasible for NLP(Ak+1). This is because xk ∈ SN and, from the
update formula in (12), for each i and t, Ak+1it ≥ Akit, so

N

i=1

Ak+1it xkit ≥
N

i=1

Akitx
k
it ≥ lt.

Thus, NLP(Ak+1) is feasible. The constraints that x ∈ SN together with the continuity of
f ensure that NLP(Ak+1) has an optimal solution. The result now follows by induction. 2

Proof of Theorem 4 in Section 3. For each i and t, the update formula in (12) ensures
that the sequence of real numbers (Akit) is monotonically non-decreasing and bounded above
by 1. It follows from the Monotone Convergence Theorem [see Bartle and Sherbert (1992)]
that for each i and t, there is a real number A∞it with 0 ≤ A∞it ≤ 1 such that A∞it =
limk→∞Akit.
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It is now shown that NLP(A∞) is feasible. To that end, from Theorem 3, let xk ∈ SN
be an optimal solution to NLP(Ak), so, for each k,

N

i=1

A∞it x
k
it ≥

N

i=1

Akitx
k
it ≥ lt, for t = 1, . . . , T . (24)

Thus, xk is feasible for NLP(A∞). Finally, the constraints x ∈ SN and the continuity of f
ensure that NLP(A∞) has an optimal solution, thus completing the proof. 2

To prove Theorem 5 in Section 3, the following lemma first establishes conditions under
which the optimal objective function values of NLP(Ak) converge to the optimal objec-
tive function value of NLP(A∞). Throughout, it is assumed that f is continuous on SN ,
NLP(A0) is feasible and hence, by Theorem 4, each NLP(Ak) is optimal, as is NLP(A∞).

Lemma 3 If for each k = 0, 1, . . ., xk is optimal for NLP(Ak) and generates Ak+1 and x∗

is optimal for NLP(A∞), then (f(xk))→ f(x∗) as k →∞.
Proof of Lemma 3. By the monotonicity of the matrices Ak, each xk is feasible for
NLP(Ak+1) and so the sequence (f(xk)) is monotonically non-decreasing and bounded
above by f(x∗) because each xk is also feasible for NLP(A∞) (see (24) in the proof of
Theorem 4 in Section 3). Thus, the limit of (f(xk)) exists and it remains to show that this
limit is bounded below by f(x∗). This is done in two parts.

Case 1. There is no integer t with 1 ≤ t ≤ T for which there is an integer k(t) and a

feasible solution x(t) for NLP(Ak(t)) with
N

i=1
A
k(t)
it x(t)it > lt.

In this case, it is shown that x∗ is feasible for every NLP(Ak) and so

f(x∗) ≤ f(xk), k = 1, 2, . . . .

The desired lower-bound result then follows on taking the limit as k →∞.
To see that x∗ is feasible for every NLP(Ak), it is shown that A0 = A1 = · · ·, for suppose

not. Then there are integers k, h, and t such that Akht < A
k+1
ht (so xkht = 0). It then follows

that
N

i=1
Ak+1it xkit =

i=h
Ak+1it xkit +A

k+1
ht x

k
ht

≥
i=h
Akitx

k
it +A

k+1
ht x

k
ht (monotonocity of Ak)

>
i=h
Akitx

k
it +A

k
htx

k
ht (choice of k and xkht = 0)

≥ lt (xk is feasible for NLP(Ak)).

Taking k(t) = k + 1 and x(t) = xk contradicts the hypotheses of this case.

Case 2. There is an integer t with 1 ≤ t ≤ T for which there is an integer k(t) and a

feasible solution x(t) for NLP(Ak(t)) with
N

i=1
A
k(t)
it x(t)it > lt.

In this case, the lower-bound result is obtained by producing a sequence (wj) converging
to x∗ and, for each j, an integer kj ≥ j such that wj is feasible for NLP(Akj ), the latter
yielding

f(wj) ≤ f(xkj ), j = 1, 2, . . .
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On taking limits on both sides of the foregoing inequality, it then follows by the convergence
of (wj) to x∗, the continuity of f , and the convergence of (f(xk)) that

f(x∗) = lim
j→∞

f(wj) ≤ lim
j→∞

f(xkj ) = lim
k→∞

f(xk).

The sequence (wj) is constructed by showing that for every > 0, there is an integer
k( ) such that the -neighborhood of x∗ and the feasible region of NLP(Ak( )) intersect.
The sequence (wj) is then obtained by setting = 1/j, kj = max{k(1/j), j} and letting wj
be any point in both the -neighborhood of x∗ and the feasible region of NLP(Akj ). Thus,
let > 0.

Now k( ) is chosen so that a point z on the line segment between x∗ and a new point
x (constructed below) is both feasible for NLP(Ak( )) and in the -neighborhood of x∗. To
construct this new point x, from the hypotheses of this case, the task constraints can be
renumbered so that (a) for all t = 1, . . . , t∗, there is an integer k(t) and a feasible solution

x(t) for NLP(Ak(t)) with
N

i=1
A
k(t)
it x(t)it > lt and (b) for all t = t

∗ +1, . . . , T , there does not

exist an integer k(t) and a feasible solution x(t) for NLP(Ak(t)) with
N

i=1
A
k(t)
it x(t)it > lt.

Now let m = max{k(t) : t = 1, . . . , t∗} and

x =
t∗

t=1

x(t)/t∗.

Note that x is a convex combination of feasible points for NLP(Am) and, as such, is itself
feasible for NLP(Am).

Consider now a point z = λx+(1−λ)x∗, where λ ∈ (0, 1) is chosen sufficiently close to
0 so that z is in the -neighborhood of x∗. It is now shown that there is an integer K(λ),
which is in fact the desired k( ), such that z is feasible for NLP(AK(λ)). Specifically, using
the fact that the matrices (Ak) converge to A, let K(λ) be such that

A∞it −AK(λ)it <
1

N

⎛⎝ N

j=1

A∞jt zjt − lt
⎞⎠ , t = 1, . . . , t∗; i = 1, . . . , N. (25)

Such a value for K(λ) can be chosen because the right side of (25) satisfies, for each t =
1, . . . , t∗,

N

j=1
A∞jt zjt = λ

N

j=1
A∞jt xjt + (1− λ)

N

j=1
A∞jt x∗jt (definition of z)

≥ λ
N

j=1
Amjtxjt + (1− λ)lt (monotonicity and feasibility of x∗)

> λlt + (1− λ)lt = lt [definition of m, t∗, and λ ∈ (0, 1)].

It remains to show that z is feasible for NLP(AK(λ)). To that end, consider first a task
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constraint t with 1 ≤ t ≤ t∗, then
N

i=1
A
K(λ)
it zit >

N

i=1
A∞it zit − 1

N

N

i=1

N

j=1
A∞jt zjt − lt zit [from (25)]

≥
N

i=1
A∞it zit −

N

j=1
A∞jt zjt − lt (z ∈ SN )

= lt.

Finally, for the task constraints t > t∗, as in Case 1, it is shown that for all i = 1, . . . , N ,
A0it = A

1
it = · · ·, for suppose not. Then there are integers k and h such that Akht < Ak+1ht (so

xkht = 0). It then follows that

N

i=1
Ak+1it xkit =

i=h
Ak+1it xkit +A

k+1
ht x

k
ht

≥
i=h
Akitx

k
it +A

k+1
ht x

k
ht (monotonocity of Ak)

>
i=h
Akitx

k
it +A

k
htx

k
ht (choice of k and h and xkht = 0)

≥ lt.

But this contradicts the definition of t∗. In other words, the task constraints t > t∗ are the
same for every NLP(Ak) and so z, being a convex combination of x and x∗, both of which
satisfy all of these task constraints, must itself satisfy these constraints.

The proof of Lemma 3 is now complete. 2

Proof of Theorem 5 in Section 3. Consider any subsequence of (xk) that converges to
a point x. It is clear that x is feasible for NLP(A∞). It remains to show that x is optimal
for NLP(A∞). To that end, let x∗ be optimal for NLP(A∞). From Theorem 3, it follows
that (f(xk)) → f(x∗) as k → ∞. The desired conclusion that x is optimal for NLP(A∞)
follows using the continuity of f and the subsequence (xkj ) because

f(x) = lim
j→∞ f(x

kj ) = lim
k→∞

f(xk) = f(x∗).

The proof of Theorem 5 is now complete. 2

Proof of Lemma 2 in Section 3. From the update formula in (12), for each k = 0, 1, . . .,

Ak+1it = Akit + x
k
itF (1−Akit) (26)

Taking the limit on both sides of (26) over k in the subsequence for which (xk) converges
to x∗ and recalling that (Akit) converges to A∞it yields

A∞it = A
∞
it + x

∗
itF (1−A∞it ).

The result that A∞it = 1 follows by subtracting A∞it from both sides of the foregoing equation
and then dividing by x∗itF > 0. 2

Proof of Theorem 6 in Section 3. It is first shown that x∗ is feasible for NLTP. To that
end, note from Theorem 5 that x∗ is optimal, and hence feasible, for NLP(A∞), so

N

i=1

A∞it x
∗
it ≥ lt, for t = 1, . . . , T (27)
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Consider a fixed value of t between 1 and T and define X+ = {1 ≤ i ≤ N : x∗it > 0} and
X0 = {1 ≤ i ≤ N : x∗it = 0}. Then,

N

i=1
uitx

∗
it =

i∈X+

uitx
∗
it +

i∈X0

uitx
∗
it

=
i∈X+

(1)x∗it +
i∈X0

uit(0) (definition of uit, X
+, and X0)

=
i∈X+

A∞it x∗it +
i∈X0

A∞it (0) (Lemma 2)

=
N

i=1
A∞it x∗it (definition of X0)

≥ lt [from (27)]

To see that x∗ is optimal for NLTP, let x be any feasible solution for NLTP. It will be
shown that f(x∗) ≥ f(x) by establishing that x is feasible for NLP(A∞), for then, because,
by hypothesis, x∗ is optimal for NLP(A∞), f(x∗) ≥ f(x). Thus, it remains to show that x
is feasible for NLP(A∞), but,

lt ≤
i∈X+

uitxit +
i∈X0

uitxit (x is feasible for NLTP)

=
i∈X+

(1)xit +
i∈X0

(0)xit (definition of uit)

=
i∈X+

A∞it xit +
i∈X0

(0)xit (Lemma 2)

≤
i∈X+

A∞it xit +
i∈X0

A∞it xit

=
N

i=1
A∞it xit. 2

Proof of Theorem 7 in Section 3. Because f is strictly convex, an optimal solution of
NLTP can occur only at an extreme point of NLTP. Furthermore, every extreme point of
NLTP is integer because of the transportation-like constraints. Thus, every optimal solution
of NLTP is integer. 2
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