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The conventional definition of a topological metric over a space specifies properties
of any measure of “how separated” two points in that space are. Here it is shown how
to extend that definition, and in particular the triangle inequality, to concern arbitrary
numbers of points. Such a measure of how separated the points within a collection
are can be bootstrapped, to measure “how separated” from each other are two (or
more) collections. The measure presented here also allows fractional membership of an
element in a collection, and therefore measures “how spread out” a probability distribu-
tion over a space is. When such a measure is bootstrapped to compare two collections,
it measures how separated two probability distributions are, or more generally, how
separated a distribution of distributions is.

1.1 Introduction

The conventional definition of a topological metric formalizes the concept of dis-
tance. It specifies properties required of any function that purports to measure
“how separated” two elements of a space are. However often one wants to mea-
sure “how separated” the members of a collection of more than two elements
is. The conventional, ad hoc way to do this is to combine the pair-wise metric
values for all pairs of elements in the collection, into an aggregate measure.

As an alternative, here the formal definition of a topological metric is ex-
tended to collections of more than two elements. In particular, the triangle
inequality is extended to such collections. The measure presented here applies
to collections with duplicate elements. It also applies to collections with “frac-
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tional” numbers of elements, i.e., to probability distributions. Furthermore, this
measure can be bootstrapped to measure “how separated” from each other two
collections are. In other words, given a measure ρ of how separated from each
other the elements in an arbitrary collection ξ are, one can define a measure of
how separated from each other two collections ξ1 and ξ2 are. More generally,
one can measure how separated a collection of such collections is. Indeed, with
fractional memberships such bootstrapping allows us to measure how separated
a distribution of distributions is.

In the next section the definition of a multi-argument metric (multimetric,
for short) is presented, together with extensive set of examples. For instance, it
is shown that the standard deviation of a probability distribution across RN is
a multimetric, whereas the variance of that distribution is not. The following
section shows how to bootstrap from a multimetric for elements within a collec-
tion to a multimetric over collections. A fuller version of this paper, discussing
applications and vector-valued multimetrics, and including all proofs, can be
found at http://....

1.2 Multimetrics

Collections of elements from a space X are represented as vectors of counts,
i.e., functions from x ∈ X → {0, 1, 2, . . .}. So for example, if X = {A,B,C},
and we have the collection of three A’s, no B’s, and one C, we represent that
as the vector (3, 0, 1). It is natural to extend this to functions from x ∈ X to
R. In particular, doing this will allow us to represent probability distributions
(or density functions, depending on the cardinality of X) over X. Accordingly,
our formalization of multimetrics will provide a measure for how how spread
out a distribution over distributions is.1 Given X, the associated space of all
functions from X to R is written as RX . The subspace of functions that are
nowhere-negative is written as (R+)X .

As a notational comment, integrals are written with the measure implicitly
set by the associated space. In particular, for a finite space, the point-mass
measure is implied, and the integral symbol indicates a sum. In addition δx is
used to indicate the appropriate type of delta function (Dirac, Kronecker, etc.)
about x. Other shorthand is RX ≡ (R+)X − {0} and ||v|| to mean

∫
dx v(x).

In this representation of collections of elements from X, any conventional
metric taking two arguments in X can be written as a function ρ over a subset
of the vectors in RX . That subset consists of all vectors that either have two of
their components equal to 1 and all others 0, or one component equal to 2 and
all others 0. For example, for X = {A,B,C}, the metric distance between A
and B is ρ(1, 0, 1), and from A to itself is ρ(2, 0, 0).

Generalizing this, a multimetric for T (X) ⊆ RX is defined as a real-valued
function ρ over RX such that ∀u, v, w ∈ RX ,

1See [4, 2, 3, 5, 1, 6] and references therein for work on how spread out a pair of distributions
is.
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1) u, v, w ∈ T (X) ⇒ ρ(u + v) ≤ ρ(u + w) + ρ(v + w).
2) ρ(u) ≥ 0, ρ(kδx) = 0 ∀x, k > 0.
3) ρ(u) = 0 ⇒ u = kδx for some k, x.

In this representation of collections, if only one x ∈ X is in a collection
(perhaps occurring more than once), then only one component of u is non-
zero. Accordingly, conditions (2) and (3) are extensions of the usual condition
defining a metric that it be non-negative and equal 0 iff its arguments are the
same. Condition (1) is an extension of the triangle inequality, to both allow
repeats of elements from X and/or more than two elements from X to be in the
collection. Note though that condition (1) involves sums in its argument rather
than (as in a conventional norm-based metric for a Euclidean space) differences.
Intuitively, T (X) is that subset of RX over which the generalized version of the
triangle inequality holds.

Condition (1) implies that multimetrics obey a second triangle inequality,
just as conventional metrics do:

ρ(u + v) ≥ |ρ(u + w) − ρ(v + w)|.

(This follows by rewriting condition (1) as ρ(u + w) ≥ ρ(u + v)− ρ(v + w), and
then relabeling twice.)

Example 1: Set X = RN . Take T (X) to be those elements of RX whose norm
equals 1, i.e., the probability density functions over RN . Then have ρ(s) for any
s ∈ RX (whether in T (X) or not) be the standard deviation of the distribution

s
||s|| , i.e., ρ(s) =

√
1
2

∫
dxdx′ s(x)s(x′)

||s||2 (x − x′)2.
Conditions (2) and (3) are immediate. To understand condition (1), first, as

an example, say that all three of u, v and w are separate single delta functions
over X. Then condition (1) reduces to the conventional triangle inequality over
RN , here relating the points (in the supports of) u, v and w. This example also
demonstrates that the variance (i.e., the square of our ρ) is not a multimetric.

For a vector s that involves multiple delta functions, ρ(s) measures the square
root of the sum of the squares of the Euclidean distances between the points (in
the support of) s. In this sense it tells us how “spread out” those points are.
Condition (1) even holds for vectors that are not sums of delta functions however.
Example 2: As a variant of Ex. 1, have X be the unit simplex in RN , and use
the same ρ as in Ex. 1. In this case any element of X is a probability distribution
over a variable with N possible values. So any element of T (X) is a probability
density function over such probability distributions. In particular, say s is a
sum of some delta functions for such an X. Then ρ(s) measures how spread
out the probability distributions in (the support of) s are. If those probability
distributions are themselves sums of delta functions, they just constitute subsets
of our N values, and ρ(s) measures how spread out from one another those
subsets are.
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Example 3: As another variant of Ex. 1, for any X, take T (X) = RX . Define
the tensor contraction 〈s | t〉 ≡

∫
dxdx′s(x)t(x)F (x, x′) where F is symmetric

and nowhere-negative, and where F (x, x′) = 0 ⇔ x = x′. Then ρ(s) ≡
√
〈s | s〉

obeys conditions (2) and (3) by inspection. It also obeys condition (1).
Note that the 〈., .〉 operator is not an inner product over RX , the extension of

T (X) to a full vector space. When components of s can be negative, 〈s, s〉 may
be as well. Note also that there is a natural differential geometric interpretation
of this ρ when X consists of N values. Say we have a curve on an N -dimensional
manifold with metric tensor F at a particular point on the curve, and that at
that point the tangent vector to the curve is s. Then ρ(s) is the derivative of
arc length along that curve, evaluated at that point.

This suggest an extension of this multimetric, in which rather than a tensor
contraction between two vectors, we form the tensor contraction of n vectors:
〈s1, . . . , sn〉 ≡

∫
dx1 . . . dxns1(x1) . . . sn(xn)F (x1, . . . , xn), where F is invariant

under permutation of its arguments, nowhere-negative, and equals 0 if and only
if all its arguments have the same value. Any ρ(s) that is a monotonically
increasing function of 〈s, s, . . . , s〉1/n automatically obeys conditions (2) and (3).

It is worth collecting a few elementary results concerning multimetrics:

Lemma 1:

1. Let {ρi} be a set of functions that obey conditions (2) and (3), and {ai}
a set of non-negative real numbers at least one of which is non-zero. Then∑

i aiρi also obeys conditions (2) and (3).

2. Let {ρi} be a set of functions that obey condition (1), and {ai} a set of
non-negative real numbers at least one of which is non-zero. Then

∑
i aiρi

also obeys conditions (1).

3. Let f : R → R+ be a monotonically increasing concave function that equals
0 when its argument does. Then if ρ is a multimetric for some T (X), f(ρ)
is also a multimetric for T (X).

4. Let f : X → Y be invertible, and let ρY be a multimetric over Y . Define
the operator Bf : RX → RY by [Bf (s)](y) ≡ s(f−1(y)) if f−1(y) exists,
0 otherwise. Bf is a linear operator. This means ρX(s) ≡ ρY (Af (s)) is a
multimetric.

Example 4: Take X = RN again, and let T (X) be all of RX with bounded
support. Then by Lemma 1, the width along x1 of (the support of) s ∈ T (X) is
a multimetric function of s.

This means that the average of the width in x1 over all possible rotations of X
is also a multimetric. Similarly, consider the smallest axis-parallel box enclosing
the (support of the) Euclidean points in s. Then the sum of the lengths of the
edges of that box is a multimetric function of s.
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On the other hand, while the volume of that box obeys conditions (2) and
(3), in general it can violate condition (1). Similarly, the volume of the convex
hull of the (support of) the points in s obeys conditions (2) and (3) but can
violate (1). (In general, multimetrics have the dimension of a length, so volumes
have to be raised to the appropriate power to make them be multimetrics.)

It is worth comparing the sum-of-edge-lengths multimetric to the standard
deviation multimetric of Ex. 1 for the case where all arguments s are finite sums
of delta functions (i.e., “consist of a finite number of points”). For such an s we
can write the sum-of-edge-lengths multimetric as a sum over all N dimensions i
of maxj sj

i −minj sj
i , where sj is the j’th point in s. In contrast, the (square of

the) standard deviation multimetric is also a sum over all i, but of the (square
of the) standard deviation of the i’th components of the points in s. Another
difference is that the standard deviation multimetric is a continuous function of
its argument, unlike the sum-of-edge-lengths multimetric.
Example 5: Let X be countable and have T (X) = RX . Then ρ(s) =∫

dxΘ(s(x)) − 1 where Θ is the Heaviside function is a multimetric. This is
the volume of the support of s, minus 1.
Example 6: Let X be countable and have T (X) = RX . Then ρ(s) = ||s|| −
maxxs(x) obeys conditions (2) and (3), by inspection. Canceling terms, for this
ρ condition (1) holds iff maxx(u(x)+ v(x)) ≥ maxx(u(x)+w(x))+maxx(v(x)+
w(x)) − 2||w||. This is not true in general, for example when ||w|| = 0 and the
supports of u and v are disjoint. However if we take T (X) to be the unit simplex
in RX , then condition (1) is obeyed, and ρ is a multimetric.
Example 7: Let X have a finite number of elements and set T (X) = RX . Say
that ρ(s) = 0 along all of the axes, and that everywhere else, k ≤ ρ(s) ≤ 2k for
some fixed k > 0. Then ρ is a multimetric.

1.3 Concavity gaps and dispersions

In Ex. 1, ρ can be used to tell us how spread out a distribution over RN is. One
would like to be able to use that ρ to construct a measure of how spread out
a collection of multiple distributions over RN is. Intuitively, we want a way to
construct a metric for a space of sets (generalized to be able to work sets with
duplicates, fractional memberships, etc.) from a metric for the members within
a single set. This would allow us to directly incorporate the distance relation
governing X into the distance relation for RX .

To do this, first let {Y, S(Y )} be any pair of a subset of a vector space together
with a subset of RY such that ∀g ∈ S(Y ),

∫
dyg(y)y
||g|| ∈ Y . (As an example, we

could take Y to be any convex subspace of a vector space, with S(Y ) any subset
of RY .) Then the associated concavity gap operator C : S(Y ) → RS(Y ) is

(Cσ)(g) = σ(
∫

dy g(y)y
||g|| ) −

∫
dy g(y)σ(y)

||g||

where y ∈ Y , and both σ and g are arbitrary elements in S(Y ). So the concavity
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gap operator takes any single member of the space S(Y ) (namely σ) and uses it
to generate a function (namely, Cσ) over all of S(Y ).2

In particular, say Y = T (X) for some space X. Say we are given a multi-
metric σ measuring the (X-space) spread specified by any element of Y . Say we
are also given a g which is a normalized distribution over Y . Then Cσ(g) is a
measure of how spread out the distribution g is. Note that in this example space
S(Y ) is both the space of multimetrics over Y and the space of distributions for
Y , exemplified by σ and g, respectively.

We can rewrite the definition of the concavity gap in several ways:

Cσ(g) = σ(Eg(y)) − Eg(σ)

= σ(
y · g
||g|| ) −

σ · g
||g||

where Eg means expected value evaluated according to the probability distribu-
tion g

||g|| , and in the last expression y is the (infinite-dimensional) matrix whose
y’th column is just the vector y, and the inner products are over the vector
space S(Y ). Taken together, these equations say that the concavity gap of σ,
applied to the distribution g, is given by evaluating σ at the center of mass of
the distribution g, and then subtracting the inner product between σ and g.

Example 9: Let Y = RN , and choose S(Y ) to be the set of nowhere-negative
functions of Y with non-zero magnitude. Choose σ(y) = 1 −

∑N
i=1 y2

i . Then
Cσ(g) = V ar( g

||g|| ).
Example 10: Say X has N values, with T (X) = RX . Consider a u ∈ T (X)
whose components are all either 0 or some particular constant a such that∫

dx u(x) = 1. So u is a point on the unit hypercube in T (X), projected
down to the unit simplex. Let T be the set of all such points u. In the usual
way, the support of each element of T specifies a set of elements of X.

Let Y = T (X), and have S(Y ) = RY . Have g be a uniform average of a
countable set of delta functions, each of which is centered on a member of T .
So each of the delta functions making up g specifies a set of elements of X; g is
a specification of a collection of such X-sets.

In this scenario σ(Eg(y)) is σ applied to the union (over X) of all the X-sets
specified in g. In contrast, Eg(σ) is the average value you get when you apply
σ to one of the X-sets specified in g. Cσ(g) is the difference between these
two values. Intuitively, it reflects how much overlap there is among the X-sets
specified in g.
Example 11: Say X has N values, with T (X) = RX . Have Y = T (X), and
S(Y ) = RY , i.e., the set of all nowhere-negative non-zero functions over those
points in RN with no negative components. Choose σ(y) = H(y) ∀y ∈ Y ,
where H(.) = −

∫
dy y(x)ln[y(x)], the Shannon entropy function extended to

non-normalized y. This σ is a natural choice to measure how “spread out” any
point in Y with magnitude 1 is.

2Equivalently, it can be viewed as a non-symmetric function from S(Y ) × S(Y ) → R,
although we will not exploit that perspective here.
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Have g be a sum of a set of delta functions, about the distributions over B,
{v1, v2, . . .}. Then Cσ(g) is a measure of how “spread out” those distributions
are. In the special case where g = δv1 + δv2 , Cσ(g) is the Jensen-Shannon
divergence between v1 and v2 [1, 4]. More generally, if g is a probability density
function across the space of all distributions over B, Cσ(g) is a measure of how
“spread out” that density function is.

Lemma 2:

1. C is linear.

2. Cσ is linear ⇔ it equals 0 everywhere ⇔ σ is linear.

3. Cσ is continuous ⇔ σ is continuous.

4. Cσ(g) = 0 if g ∝ δy′ for some y′ ∈ Y .

5. Giving Cσ and the values of σ at 1+ |Y | distinct points in Y fixes the value
of σ across all Y . (|Y | is the dimension of Y .)

6. The equivalence class of all σ′ having a particular concavity gap Cσ is the
set of functions of y ∈ Y having the form {σ(y) + b · y + a : a ∈ R, b ∈
Y, σ(y) + b · y + a ∈ S(Y )}.

By (1.4), Cσ necessarily obeys the second part of condition (2) if S(Y ) = RY .
Next define a (strict) dispersion over a space X as a (strictly) concave

real-valued function over RX that obeys conditions (2) and (3) of a multimetric
∀u, v, w ∈ RX .

Example 12: Take X = {1, 2}, with T (X) = RX = R2−{0}. Define σ(u ∈ R2)
to equal 0 if u1 = 0 or u2 = 0, and equal ln(1+u1)+ ln(1+u2) otherwise. Then
σ is a (not everywhere continuous) strict dispersion.
Example 13: The X,RX , and ρ of Ex. 3 form a strict dispersion.
Example 14: The X,RX , and σ of Ex. 5 form a dispersion.
Example 15: The X,RX , and σ of Ex. 11 form a strict dispersion.

Lemma 3: Let T (X) = RX .

1. σ is a dispersion over T (X) ⇒ σ is nowhere-decreasing over T (X).

2. σ is a dispersion over T (X) and σ(s) is independent of ||s|| ∀ s = 0 ∈ T (X)
⇒ σ is constant over the interior of T (X).

3. σ is (strictly) concave over V (X) ⇔ Cσ obeys condition (2) in full (and
condition (3)) over T (X).

4. Say that σ is continuous over T (X). Then Cσ is separately (strictly)
concave over each simplex in T (X) ⇔ σ is (strictly) concave over T (X).
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Let f : R → R be monotonically increasing and strictly concave. Then by
Lemma 3.3, if σ is strictly concave, f(Cσ) obeys conditions (2) and (3). For
example, this is the case for

√
Cσ. In other words, so long as σ is a strict

dispersion,
√
Cσ obeys those conditions. On the other hand, Lemma 3.2 means

that any nontrivial σ that normalizes its argument (so that it is a probability
distribution) and then evaluates a function of that normalized argument cannot
be a dispersion. So for example, if a concavity gap is a dispersion, it must be
constant. Fortunately it is not the case that if f(Cσ) is a multimetric it must be
constant. In particular, often for a strictly concave σ,

√
Cσ for space {Y, S(Y )}

is a multimetric for an appropriate T (Y ) ⊆ S(Y ).

Example 16: Choose {σ, Y, S(Y )} as in Ex. 11, and take T (Y ) to be all
elements of S(Y ) which are sums of two delta functions. This σ is strictly
concave, so we know conditions (2) and (3) are obeyed by

√
Cσ. Furthermore,

for this choice of T (Y ), obeying condition (1) reduces to obeying the conventional
triangle inequality of two-argument metrics, and it is known that the square root
of the Jensen Shannon divergence obeys that inequality [4, 5, 1]. Therefore all
three conditions are met.
Example 17: Choose {σ, Y, S(Y )} as in Ex. 9. This σ is strictly concave, and
therefore

√
Cσ automatically obeys conditions (2) and (3). Now take T (Y ) =

S(Y ). Write Cσ(g) as 〈g, g〉 for the tensor contraction of Ex. 3, where F (y, y′) =
(y−y′)·(y−y′)

2 . So by that example, we know that
√
Cσ is a multimetric.
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