
A Chaotic Cipher Mmohocc
and Its Randomness

Evaluation

Xiaowen Zhang†, Ke Tang†and Li Shu‡
† CS Dept., GSUC-CUNY, 365 5th Ave., NY, NY 10016, U.S.A.
‡ Computer Science School, Sichuan University, 610065, China

After a brief introduction to a new stream cipher Mmohocc which utilizes multi-
map orbit-hopping mechanism and the fundamental chaos characteristics, we con-
ducted the randomness statistical tests against the keystreams generated by the ci-
pher. Two batteries of the most stringent randomness tests, namely the NIST suite
and the Diehard suite, were performed. The results showed that the keystreams have
successfully passed all the statistical tests. We conclude that Mmohocc can generate
high-quality pseudorandom numbers from a statistical point of view.

1 Introduction

Shannon [11] indicated that stretch-and-fold mechanism of mixing transforma-
tion is an important component of a cipher and it is also a way to confuse and
diffuse messages. The chaotic dynamical systems, which exhibit unpredictable,
mixing, and extremely sensitive to initial conditions, have shown strong con-
nection with cryptography since its inception. It has attracted a broad interest
among cryptographic researchers to investigate the cryptographic applications
for chaotic properties [2, 1, 4, 5, 6]. However the properties of normal chaos sys-
tems are based on continuous systems and they are long-term behaviors. Due
to limited resource and computational power in digital systems those properties
might be severely degraded [7] or even disappeared. In order to use chaotic prop-
erties in cryptosystems, we have devised a technique which accelerated chaotic
behaviors more rapidly than those in a normal chaos system.
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The Mmohocc [14] (an acronym for multi-map orbit hopping chaotic cipher),
is still under development. Its primary goal is to exploit basic properties of
chaos systems to design a cryptographically strong, fast, and feasible cipher. By
using multiple maps, i.e., multiple chaos systems, the Mmohocc cipher generates
an extremely long chaotic sequence inspired by Vernam’s one-time pad. By
hopping among multiple orbits generated from multiple maps the cipher obtains
its confusion and diffusion properties in a much faster way, which is a basic asset
for any good cryptosystem.

A chaotic map F is a map/function, usually a non-linear discrete dynamical
iteration equation, which exhibits some sort of chaotic behavior. A chaotic orbit
is the trajectory that a chaotic map iterated. Given x0 ∈ R and F , we define the
orbit of x0 under F to be the sequence of points x0, x1 = F (x0), x2 = F 2(x0),
. . . , xn = Fn(x0), . . . . The point x0 is called the seed of the orbit [3].

How do we evaluate keystreams generated by the Mmohocc? There are bat-
teries [9] of statistical tests available to analyze cryptographic random number
generators (RNGs) and pseudorandom number generators (PRNGs): the pLab,
the Crypt-X, the DIEHARD, the NIST, the ENT, the RIPE, and others. Among
them the NIST and the DIEHARD are considered the most stringent random-
ness tests. To assess the Mmohocc cipher we conducted the two aforementioned
batteries of tests and the results showed that our cipher has successfully passed
all of them.

2 The Mmohocc – A Chaotic Stream Cipher

The Mmohocc is a software based stream cipher. It “leaps” among substan-
tially many chaotic orbits to “pick up” its random sequence points. The base
ground for random sequences is spread among lots of chaotic orbits, which are
generated from multiple chaotic maps. The notion of orbit-hopping is inspired
from the frequency-hopping (FH) communication. It is one of the modulation
methods in spread spectrum communications, in which radio signals, following
a hopping pattern, switch a carrier among many frequencies. A hopping pattern
is a predefined pseudorandom sequence known to both transmitter and receiver
[13].

Figure 1 shows the constructing blocks of the Mmohocc. The Key Schedul-
ing expands a 128-bit (or 256-bit, or 512-bit) key into many subkeys (SKs) for
controlling the operations of multiple chaotic maps. Each subkey contains cer-
tain number of fields. Among them a field called hpsn (hopping-pattern serial
number) is used by the Hopping Mechanism to govern the jumping behavior
between the chaotic orbits. In the following subsections we will explain the
hopping-pattern and the random number extraction method.
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Figure 1: The block diagram of the chaotic cipher.

2.1 Hopping patterns

The hopping pattern is a predefined pseudorandom sequence of certain number
of orbits, it tells how Mmohocc hops among orbits. In the current version the
hpsn field of a subkey takes 8 bits long, therefore it can be changed between 0
and 255. Each hpsn corresponds to one of available hopping patterns, which are
stored in a lookup table. For instance, if a chaotic map has 11 orbits and its
hopping-pattern is 7 3 9 1 6 10 4 5 2 11 8, then we know that when it comes to
this map Mmohocc extracts random numbers on orbit 7 first and then orbit 3,
orbit 9, orbit 11 in this order.

2.2 Random number extraction

A chaotic orbit point xn is a real number (in the case of logistic map, xn < 1.0)
and is represented in a data type of double in computer. We extract two smaller
integers as random numbers from the point xn in the following method, see
Figure 2. By doing so, we further muddle the bits and add additional randomness
to the keystream.

1. Convert double type xn into a 32-bit integer by multiplying 252.

2. Split the above integer into four 8-bit integers a, b, c, d. Here a and d are
the most left and right 8-bit, b and c are in the middle. Then the output
two smaller pseudorandom integers are: p = a⊕ c and q = b⊕ d.

3 Statistical tests

The randomness of a bit sequence is characterized and described in terms of
probability. Both NIST and DIEHARD suites include dozens of independent
and computationally intensive statistical tests. Most of these tests return a test
statistic and its corresponding probability value p-value [12]. The p-value [13] is
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Figure 2: Random number extraction.

the probability of obtaining a test statistic as “impressive” as the one observed
if the sequence is random, so that the statistic was the result of chance alone.
In other words, the p-value summarizes the strength of the evidence against the
perfect randomness hypothesis. Small values (p-value < 0.05 or p-value < 0.01)
are interpreted as evidence that a sequence is unlikely to be random. Here 0.05
and 0.01 are significance level, usually denoted as α.

The p-value’s are obtained by p = F (z), where F is a special function
such as the complementary error function erfc, the incomplete gamma function
gamminc, the standard normal (cumulative distribution) function normcdf , or
the gamma function gamma.

3.1 The NIST statistical test suite

The NIST suite [10] provides a battery of 16 statistical tests. They assess the
presence of a pattern which, if detected, would indicate that the sequence is
non-random. In each test a p-value is calculated. The significance level α for all
tests in NIST Suite is set to 1%. A p-value of zero indicates that the sequence
appears to be completely non-random. A p-value less than α would mean that
the sequence is non-random with a confidence of 99%. If a p-value is greater
than α, we accept the sequence as random with a confidence of 99%.

Table 1 shows a result obtained on a series of data files of 1,192,755,216
(over 1 billion) bits each. The files were generated from the Mmohocc by using
different keys. The Suite took one of files as input data, and executed all 16 tests.
Set 1000 as the number of bit sequences, each containing 1 million random bits.
The mean and variance of the p-value’s are displayed in the table.

For further interpreting empirical results NIST suite has also adopted the
following two approaches.

Approach–1: The examination of the proportion of passing sequences
In the final analysis report file generated by the suite, a value called the

proportion was listed for each test. The proportion is the number of sequences
having a p-value greater than the significance level α, divided by the total num-
ber of bit sequences tested. That is the percentage of passed tests.

NIST SP800-22 specifies a range of acceptable proportions. The range is
determined by using the confidence interval defined as p̂±3

√
p̂(1− p̂)/m, where
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Table 1: Mean and variance of p-value’s for a bit sequence (NIST suite)

TSN Test Name Mean of Variance Conclusion
p-value’s of p-value’s

1 Approximate Entropy 0.5146 0.0857 Success
2 Block Frequency 0.5040 0.0844 Success
3 Cumulative Sums (Forward) 0.4777 0.0799 Success

Cumulative Sums (Reverse) 0.4824 0.0815 Success
4 Fast Fourier Transform (Spectral) 0.4799 0.0800 Success
5 Frequency (Monobit) 0.4894 0.0827 Success
6 Lempel-Ziv Compression 0.5024 0.0823 Success
7 Linear Complexity 0.5024 0.0823 Success
8 Longest Runs of Ones 0.5121 0.0849 Success
9 Maurer’s Universal Statistical 0.5000 0.0889 Success
10 Non-Overlapping Template Matching 0.4997 0.0833 Success
11 Overlapping Template Matching 0.4970 0.0830 Success
12 Random Excursions 0.5087 0.0835 Success
13 Random Excursions Variant 0.5103 0.0813 Success
14 Rank 0.4963 0.0841 Success
15 Runs 0.4980 0.0841 Success
16 Serial 0.5024 0.0847 Success

p̂ = 1 − α, and m is the sample size, which tells how many bit sequences were
tested.

In our case, 1000 bit sequences (m = 1000) and 1 million bits per sequence
were used. By the formula above, the range of acceptable proportion is from
0.9805 to 0.9994, inclusively. Figure 3 shows the proportion for each of the 16
tests. Since the proportion for each test is within the range, so we are confident
to accept the sequence as random bit sequence.

Approach–2: The examination of the uniformity of p-value’s
Uniformity may be examined by computing the following χ2 value for each

test,

χ2 =
∑ (Ci −m/10)2

m/10

where Ci is the number of p-value’s in sub-interval [(i−1)/10, i/10) (i = 1 ∼ 10),
and m is the sample size (i.e., the number of bit sequences tested). We calculate
a p-value of the p-value’s obtained for a statistical test as

pp-value = gammainc(χ2/2, 9/2, ‘upper’).
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Figure 3: Passing proportions of 16 tests in NIST suite.

If pp-value ≥ 0.0001 then those p-value’s can be considered uniformly dis-
tributed. Table 2 shows the pp-values of the 16 tests and all p-value’s are uni-
formly distributed.

Table 2: Uniformity distribution of p-value’s (NIST suite)

TSN 1 2 3 4 5 6 7 8
pp-value 0.546 0.432 0.035 0.057 0.197 0.047 0.693 0.392
Conclusion Pass Pass Pass Pass Pass Pass Pass Pass
TSN 9 10 11 12 13 14 15 16
pp-value 0.302 0.473 0.347 0.395 0.380 0.868 0.107 0.508
Conclusion Pass Pass Pass Pass Pass Pass Pass Pass

3.2 The DIEHARD suite

The Diehard Suite developed by George Marsaglia [8] consists of 18 stringent
statistical tests. Binary file must be provided – a file of 10 to 11 megabytes, i.e.,
at least 80 million bits. 100 binary files to be tested of 100 million bits each
were generated by Mmohocc with 100 different keys. Table 3 shows a result
produced from a single binary file of 100 million bits. A p-value larger than 0.01
and smaller than 0.99 means that the sequence is random with a confidence of
99%. Note: most of the tests in DIEHARD return a p-value, which should be
uniform on [0, 1) if the input file contains truly independent random bits.
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Table 3: p-value’s and conclusion (DIEHARD suite)

TSN Test Name p-value Conclusion
1 Birthday Spacing 0.3213 Success
2 Overlapping 5-Permutation 0.1489 Success
3 Binary Rank (31× 31 Matrices) 0.8363 Success
4 Binary Rank (32× 32 Matrices) 0.3227 Success
5 Binary Rank (6× 8 Matrices) 0.4506 Success
6 Bitstream 0.5638 Success
7 Overlapping-Pairs-Sparse-Occupancy 0.5704 Success
8 Overlapping-Quadruples-Sparse-Occupancy 0.5193 Success
9 DNA 0.4021 Success
10 Count-The-1’s (on stream of bytes) 0.2279 Success
11 Count-The-1’s (on specific bytes) 0.5343 Success
12 Parking Lot 0.9362 Success
13 Minimum Distance 0.2327 Success
14 3D Spheres 0.3366 Success
15 Squeeze 0.4369 Success
16 Overlapping Sums 0.6415 Success
17 Runs 0.5000 Success
18 Craps 0.5579 Success

4 Conclusions

By rapidly hopping among many orbits/many maps the Mmohocc cipher greatly
speeds up the chaotic mixing. This makes the Mmohocc a feasible stream cipher.
Although evaluating statistical characteristics of keystreams can never replace
security analysis for a stream cipher, in principle it is an inevitable and standard
procedure to go through randomness tests. Successfully passing all two batteries
of the stringent statistical tests supports our cipher design. We conclude the
paper with the following summary.

• The Mmohocc used a hopping mechanism to implement a chaotic cipher.

• The keystreams generated by the Mmohocc have passed two batteries of
randomness tests with satisfactory results.

• All the testing results obtained on the Mmohocc confirmed that a high
level of confidence in the randomness of the keystreams has been achieved.

• The Mmohocc generated high quality pseudorandom numbers.

• The randomness statistical tests ensured our technique and helped to im-
prove our adjustments for certain parameters/coefficients involved in the
chaotic maps, orbit hopping offsets, and most importantly hopping pat-
terns.
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