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In this supposed ‘information age’ a high premium is put on the widespread availability of 
information.  Access to as much information as possible is often cited as key to the making of 
effective decisions.  Whilst it would be foolish to deny the central role that information and its 
flow has in effective decision making, this paper explores the equally important role of 
‘barriers’ to information flows in the robustness of complex systems.  The analysis 
demonstrates that (for simple Boolean networks at least) a complex system’s ability to filter 
out, i.e., block, certain information flows is essential if it is not to be beholden to every external 
signal.  The reduction of information is as important as the availability of information. 

1   Introduction 
In the Information Age the importance of having unfettered access to information is 
regarded as essential - almost a ‘right’ - in an open society.  It is perhaps obvious that 
acting with the benefit of (appropriate) information to hand results in ‘better’ actions 
(i.e., actions that are more likely to achieve desired ends), than acting without 
information, although incidents of ‘information overload’ and ‘paralysis by (over) 
analysis’ are also common.  In this chapter, I would like to examine one particular 
aspect of information:  how barriers to information, and its flow, are essential in the 
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maintenance of a coherent functioning network.  The paper begins with an 
introduction to Boolean networks and particular properties that are relevant to our 
analysis herein. 

2   Boolean networks: Their structure and their dynamics 
Given the vast number of papers already written on both the topology and dynamics 
of such Boolean networks there is no need to go into too much detail here.  The 
interested reader is encouraged to look at Kauffman [1] for his application of Boolean 
networks to the problem of modeling genetic regulatory networks.  A short online 
tutorial is offered by Lucas [2]. 

The state, or configuration, space for such a network contains 2N unique states, 
where N is the size of the.  Because state space is finite, as the system is stepped 
forward it will eventually revisit a state it has already visited.  Combine this with the 
fact that from any state the next state is unique, then any Boolean network will 
eventually follow a cycle in state space.  As a result, state space (or phase space) is 
connected in a non-trivial way, often containing multiple periodic attractors each 
surrounded by fibrous branches of states, known as transients.  The transition 
functions for each node were chosen randomly for the networks examined in this 
research, but they did not include the constant rules 0 (0000), or 15 (1111) as these 
force the node to be input-independent - nodes with constant transition functions do 
not change from their initial state. 

How is a network’s structure and its dynamics related?  It is in the consideration 
of this question that we can begin to explore the role of information flows in such 
systems. 

The potentially complex dynamics that arises from the apparently simple 
underlying structure is the result of a number of interacting structural feedback loops.  
It is the flow of information around these structural loops, and the interactions 
between these loops that results the complex structure of state space.  The number of 
structural P-loops increases exponentially (on average) as N increases, for example, 
whereas the number of state space p-loops increases (on average) in proportion to N 
(not N  as reported in [1], which was found to be the result of sampling bias [3]. 

For networks containing only a few feedback loops it is possible to develop an 
algebra that can relate P-space to p-space.  However, as the number of p-loops 
increases this particular problem becomes intractable very quickly indeed, and the 
development of a linking algebra utterly impractical. 

Sometimes the interaction of a network’s P-loops will result in p-space collapsing 
to a single period-1 attractor in which every point in state space eventually reaches 
the same state.  Sometimes, a single p-loop will result whose period is much larger 
than the size of the network - such attractors are called quasi-chaotic (which can be 
used as very effective random number generators).  Most often multiple attractors of 
varying periods result which are distributed across state space in complex ways. 

Before moving on to consider the robustness of Boolean networks, which will 
then allow us to consider the role information barriers play in network dynamics, it 
should be noted that state space can also be considered to be functional space.  The 
different attractors that emerge from a network’s dynamics represent the network’s 
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different functions.  For example, in Kauffman’s analogy with genetic regulatory 
networks, the network structure represents the genotype, whereas the different phase 
space attractors represent the resulting phenotype, with each attractor representing a 
different cell type.  We can also regard the different attractors as different modes of 
operation.  Furthermore, an appreciation of a system’s state space structure tells us 
about the different responses a system will have to a variety of external perturbations, 
i.e., it tells us which contextual archetypes the system ‘sees’ and is able to respond to. 

2.1 Defining dynamical robustness 
The dynamical robustness of networks is concerned with how stable a particular 
network configuration is under the influence of small external perturbations.  In 
Boolean networks we can assess this measure by disturbing an initial configuration 
(by flipping a single bit/input, i.e., reversing the state of one of the system’s nodes) 
and observing which attractor basin the network then falls into.  If it is the same 
attractor that follows from the unperturbed (system) state then the state is stable when 
perturbed in this way.  An average for a particular state (or, system configuration) is 
obtained by perturbing each bit in the system state and dividing the number of times 
the same attractor is followed by the network size.  For a totally unstable state the 
robustness score would be 0, and for a totally stable state the robustness score would 
be 1.  The dynamical robustness of the entire network is simply the average 
robustness of every system state in phase space.  This measure provides additional 
information concerning how state space is connected in addition to knowing the 
number of cyclic attractors, their periods, and their weights (i.e., the volume of phase 
space they occupy). 

2.2 More on structure and dynamics: Walls of constancy, dynamics 
cores and modularization 
As we have come to expect in complex systems research, there is always more to the 
story than what first meets the eye.  This is also the case which the issue of the 
relationship between network structure and dynamics.  Although information flows 
(and is transformed) around the various structural networks, certain logical couplings 
‘emerge’ that force particular nodes into one state or another, keeping them in that 
state for as long as the network is simulated.  In other words, once the network is 
initiated and run forward, after some seemingly arbitrary period some nodes cease to 
allow information to pass.  These ‘fixed’, or ‘frozen’ nodes effectively disengage all 
structural feedback loops that include those particular nodes - although these 
structural loops still exist, they are no longer able to carry information around them.  
As such we can refer to them as non-conserving information loops.  A number of 
such nodes can form ‘walls of constancy’ through which no information can pass, 
and effectively divide the network up into non-interacting sub-networks, i.e., the 
network is modularized.  This process is illustrated in Figure 1. 

The identification of these nodes is non-trivial (and even ‘non-possible’) before 
the networks are simulated.  Although the effect is the same as associating a constant 
transition function with a particular node, the effect ‘emerges’ from the dynamic 
interaction of the structural feedback loops.  It is a rare case indeed that these 
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interactions can be untangled and the emerging frozen nodes identified analytically 
beforehand. 

These ‘frozen’ nodes do not contribute to the qualitative structure of phase space, 
or network function.  A Boolean network characterized by a 2p1, 1p2 phase space, 
say, will still be characterized by a 2p1, 1p2 phase space after the frozen nodes are 
removed.  In this sense, they don’t appear to contribute the networks function - they 
block the flow of information, but from this perspective have no functional role.  
Another way of saying this is that, if we are only concerned with maintaining the 
qualitative structure of phase space, i.e., the gross functional characteristics of a 
particular network, then we need only concern ourselves with information conserving 
loops; those structural feedback loops that allow information to flow around the 
network.   

The process employed to identify and remove the non-conserving loops is 
detailed in [4].  As network size increases it becomes increasingly difficult to 
determine a network’s phase space structure.  As such reduction techniques are not 
only essential in facilitating an accurate determination, but also in research that 
attempts to develop a thorough understanding of the relationship between network 
structure and network dynamics (as, already mentioned, only information conserving 
structural loops contribute to the network’s gross functional characteristics).  Another 
term: what remains after all non-conserving loops (which includes associated ‘frozen’ 
nodes, and nodes that have no outgoing connections, or ‘leaf’ nodes) are removed 
from a particular network is known as the network’s dynamic core.  A dynamic core 
contains only information conserving loops.  So the majority of (random) Boolean 
networks comprise a dynamic core (which may be modularized) plus additional 
nodes and connections that do not contribute to the asymptotic dynamics of the 
network. 

3 The role of non-conserving (structural) information 
loops 
As the gross phase space characteristics of a Boolean network and its ‘reduced’ form 
are the same, i.e., (in this sense) they are functionally equivalent, it is tempting to 
conclude that non-conserving information loops - information barriers - are 
irrelevant.  If this were the case then it might be used to support the widespread 
removal of such ‘dead wood’ from complex information systems, e.g., human orga-
nizations.  The history of science is littered with examples of theories which once 
regarded such and such a phenomena as irrelevant, or ‘waste’, only to discover later 
on that it plays a very important role indeed.  The growing realization that ‘junk 
DNA’ is not actually junk is one such example.  What is often found is that a change 
of perspective leads to a changed assessment.  Such a shift leads to a different 
characterization of non-conserving information loops.  Our limited concern, thus far 
herein, with maintaining a qualitatively equivalent phase space structure in the belief 
that a functionally equivalent network is created, supports the assessment of non-
conserving information loops as ‘junk’.  However, this assessment is wrong from a 
different perspective. 

There are at least two roles that non-conserving information loops play in random 



 5 

Boolean networks: 
 

1. The process of modularization, and; 
2. The maximization of robustness. 

3.1 Modularization in Boolean networks 
We have already briefly discussed the process of modularization above.  This 
process, which we might labeled as an example of horizontal emergence [5], was first 
reported in [6].  It was argued that the spontaneous emergence of dynamically 
disconnected modules is key to understanding the complex (as opposed to ordered 
and quasi-chaotic) behavior of complex networks.  So, the role of non-conserving 
information loops is to limit the network’s dynamics so that it does not become 
overly complex, and eventually quasi-chaotic (which is essentially random in this 
scenario: when you have a network with a high-period attractor of say 1020 - which is 
not hard to obtain - it scores very well indeed against all tests for randomness.  One 
such example is the lagged Fibonacci random number generator). 

In Boolean networks the resulting modules are independent of each other, so the 
result of modularization, is a collection of completely separate subsystems.  This 
absolute independency is different from what we see in nature, but the attempt to 
understand natural complex systems as integrations of partially independent and 
interacting modules is arguably a dominant theme in the life science, cognitive sci-
ence, and computer science (see, for example, [7]).  It is likely that some form of 
non-conserving, or perhaps ‘limiting’, information loop structure plays an important 
role in real world modularization processes.   Another way of expressing this is: 
organization is the result of limiting information flow. 

3.2 Dynamic robustness of complex networks 
Dynamic robustness was defined above, in a different way, as the stability of a 
network’s qualitative behavior in the face of external signals.  In this section we will 
consider the dynamic robustness of an ensemble of random Boolean networks and 
their associated ‘reduced’ form to assess any difference between the two. 

To do this comparison the following experiment was performed.  110,000 random 
Boolean networks with N=15 and k=2 (with random connections and random 
transition functions, excluding the two constant functions) were constructed.  For 
each network its reduced form was determined using the method detailed in [4].  The 
average dynamical robustness was calculated for both the unreduced networks and 
their associated reduced networks.  The data from this experiment is presented in 
Figure 2a, which shows the relationship between the average unreduced and reduced 
dynamic robustness for the 110,000 networks considered (the average is represented 
by the black line).  It is clear that on average the robustness of the reduced networks 
is noticeably lower than the unreduced networks.  On average, the dynamic 
robustness of the reduced networks is typically of the order of 20% less than their 
parent (unreduced) networks.  Of course, the difference for particular networks is 
dependent on specific contextual factors such as the number of non-conserving 
information loops in the (unreduced) networks  - the extent of the dynamic core, in 
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other words.  This strongly suggests that the reduced networks are rather more 
sensitive to external signals than the unreduced networks.  In some instances the 
robustness of the reduced network is actually zero meaning that any external 
perturbation whatsoever will result in qualitative change.  What is also interesting, 
however, is that sometimes the reduced network is actually more robust than the 
unreduced network.  This is a little surprising, but not when we take into account the 
complex connectivity of phase space for these networks.  This effect is observed in 
cases when there is significant change in the relative attractor basin weights as a 
result of the reduction process and/or a relative increase in the orderliness of phase 
space. 

The different colors in Figure 2a indicate the number of data points that fall into a 
particular data bin (the data is rounded down to 2 decimal places, i.e., 100 data bins 
are created). So red regions contain many data points (> a10 where a is the relative 
temperature of the data, a = 1.8 in this case) and dark blue regions contain only one 
(or a0) data point.  It is clear that the data is multi-modal and as such we must be 
wary of using averages.  Whereas Figure 2a includes all the data collected regarding 
unreduced and reduced dynamic robustness, Figures 2b – 2o show only the data for 
particular sizes of dynamic core.  This helps considerably in understanding the 
detailed structure of Figure 2a.  The various diagonal ‘modal peeks’ relate to 
networks with different dynamic core sizes, and the different horizontal structures 
correlate with networks containing smaller dynamic cores which can only display a 
fewer number of dynamic robustness values, i.e., as the size of the dynamic core 
decreases the data appears more discrete, and as the core size increases the data 
appears more continuous (although there is still an upper bound to its resolution). 

Further analysis was performed to confirm the relationship between network 
structure, dynamic core structure and, phase space structure.  This included 
comparing the number of structural feedback loops in the overall network to the 
number of (information conserving only) loops in network’s dynamic core.  Figure 3 
shows the data for all (N=15, k=2) networks studied with all dynamic core sizes.  The 
data indicates that on average the dynamic core of a network has between 30% and 
60% fewer structural feedback loops; all of them information conserving loops.  In 
the next section we shall consider the implications of this in terms of phase space 
characteristics and dynamic robustness. 

4 Phase space compression and robustness 
In Boolean networks, each additional node doubles the size of phase space.  So even 
if ‘frozen’ nodes contribute nothing to longer term (asymptotic) dynamics, i.e., the 
number and period of phase space attractors, they at least increase the size of phase 
space.  For example, the phase space of an N=20 network is 1024 times larger than an 
N=10 network.  Thus, node removal significantly reduces the size of phase space.  As 
such, the chances that a small external signal will inadvertently target a sensitive area 
of phase space, i.e., an area close to a separatrix, and therefore pushing the network 
into a different attractor, are significantly increased: a kind of qualitative chaos.  This 
explains why we see the robustness tending to decrease when non-conserving 
information loops are removed.   
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Prigogine said that self-organization requires a container (self-contained-
organization). The non-conserving information loops function as the environmental 
equivalent of a container.  So it seems that, although non-conserving information 
loops do not contribute to the long term behavior of a particular network, these same 
loops play a central role as far as network stability is concerned.  Any management 
team tempted to remove 80% of their organization in the hope of still achieving 80% 
of their yearly profits (which is sometimes how the 80:20 principle in general systems 
theory is interpreted) would find that they had created an organization that had no 
protection whatsoever to even the smallest perturbation from its environment – it 
would literally be impossible to have a stable business. 

It should be noted that the non-conserving information loops do not act as 
impenetrable barriers to external signals (information).  These loops simply limit the 
penetration of the signals into the system.  For example, in the case of the mod-
ularization process, the products of incoming signals may, depending on network 
connectivity, still be fed from a non-conserving information loop into information 
conserving loops for a particular network module.  Once the signals have penetrated a 
particular module, they cannot cross-over into other modules (as the only inter-
modular connections are via non-conserving loops). 

It should also be noted that, even though a particular signal may not cause the 
system to jump into a different attractor basin, it will still push the system into a 
different state on the same basin.  The affect of signals that end-up on non-conserving 
information loops is certainly not nothing.  So, although I use the term information 
‘barriers’, these barriers are semi-permeable. 

5 Conclusions 
From the analysis presented herein it is clear that non-conserving information loops - 
information barriers - are not ‘expendable’: they protect a system from both 
quantitative and qualitative (quasi) chaos.  Quantitative chaos is resisted by the 
emergent creation of modules - through the process of modularization - which 
directly reduces the chances of phase space being dominated by the very long period 
attractors associated with quasi-randomness in Boolean networks.  Whereas 
qualitative chaos - the rapid ‘jumping’ from one attractor basin to another in response 
to small external signals - is resisted by the expansion of phase space, which reduces 
the possibility of external signals pushing a system across a phase space separatrix. 

To conclude, I would suggest that ‘barriers’ (both impenetrable and semi-
permeable) to information flow play an important role in the functioning of all 
complex information systems.  However, the implications (and meaning) of this for 
real world systems is open to many different interpretations.  At the very least it 
suggests that ‘barriers’ to information flow should be taken as seriously as ‘supports’ 
to information flow (although, paradoxically, a good ‘supporter’ is inherently a good 
‘barrier’!)  
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Figure 1 The process of modularization in complex networks 
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Figure 2 A detailed viewed of the dynamical robustness data collected. (a) all data, 
with black points showing the overall average, (b) data associated with a dynamic 
core size of 15, (c) 14, (d) 13, (e) 12, (f) 11, (g) 10, (h) 9, (i) 8, (j) 7, (k) 6, (l) 5, (m) 
4, (n) 3, and (o) 2. 
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Figure 3 A data histogram showing the relationship between the number of structural 
feedback loops in the unreduced networks, and the number of active structural loops 
in their dynamic cores.  The black points represent the average number of structural 
loops in dynamic core. 


