CONTENTS

Introduction
“Significant points” in the study of complex systems
Organization and Program

I Transcripts

1 Can there be a science of complex systems?
 1 General systems theory?
 2 Some principles of complex system design
 2.1 Homeostasis
 2.2 Membranes
 2.3 Specialization
 2.4 Near-decomposability
 3 Organizations and markets
 3.1 The market bias of contemporary economic theory
 3.2 Motivations in organizations
 3.3 Adaptive production systems
 4 Conclusion

2 Evolution
 1 Selection and production
 2 Variation

3 Psychology and corporations: A complex systems perspective

4 Genome complexity (Session introduction: Emergence)

5 Emergent properties and behavior of the atmosphere

6 Systems properties of metabolic networks

7 A hypothesis about hierarchies

8 Session introduction: Informatics
Papers

11 Theories in (inter)action: A complex dynamic system for theory evaluation in Science Studies

12 Modeling fractal patterns with Genetic Algorithm solutions to a variant of the inverse problem for Iterated Function Systems (IFS)

13 An artificial life model for investigating the evolution of modularity

14 From inductive inference to the fundamental equation of measurement

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>86</td>
</tr>
<tr>
<td>1.1 The IFS</td>
<td>87</td>
</tr>
<tr>
<td>1.2 The GA</td>
<td>87</td>
</tr>
<tr>
<td>2 Encoding the IFS on a GA</td>
<td>88</td>
</tr>
<tr>
<td>2.1 Initializing the population</td>
<td>88</td>
</tr>
<tr>
<td>2.2 IFS-GA genetic operators</td>
<td>91</td>
</tr>
<tr>
<td>3 The GA search</td>
<td>91</td>
</tr>
<tr>
<td>3.1 Definition of symbols</td>
<td>92</td>
</tr>
<tr>
<td>3.2 Objective (fitness) function</td>
<td>92</td>
</tr>
<tr>
<td>3.3 The GA’s search in the parameter hypercube $P = [-1.0, 1.0]^{24}$</td>
<td>95</td>
</tr>
<tr>
<td>4 Applications</td>
<td>97</td>
</tr>
<tr>
<td>4.1 Critical phenomena</td>
<td>97</td>
</tr>
<tr>
<td>4.2 Other applications</td>
<td>99</td>
</tr>
<tr>
<td>5 Conclusions</td>
<td>99</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>104</td>
</tr>
<tr>
<td>2 The model</td>
<td>105</td>
</tr>
<tr>
<td>3 Preliminary results</td>
<td>108</td>
</tr>
<tr>
<td>4 Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>2 The evolution of a model during learning</td>
<td>116</td>
</tr>
<tr>
<td>2.1 Algorithmic complexity</td>
<td>116</td>
</tr>
<tr>
<td>2.2 Bayesian Inductive Inference</td>
<td>117</td>
</tr>
<tr>
<td>2.3 Evolution of a model</td>
<td>117</td>
</tr>
<tr>
<td>3 Shannon entropy</td>
<td>119</td>
</tr>
<tr>
<td>3.1 Conditional entropy and mutual information</td>
<td>119</td>
</tr>
<tr>
<td>3.2 Complexity and randomness of strings</td>
<td>120</td>
</tr>
</tbody>
</table>
15 Controlling chaos in systems of coupled maps with long-range interactions 123
1 Introduction .. 124
2 Model and results .. 124
3 Discussion ... 129

16 Assessing software organizations from a complex systems perspective 133
1 Introduction .. 134
2 The software process and its evaluation 134
 2.1 Different evaluations of the process 134
 2.2 Some facts: Feedback and emergent patterns 135
 2.3 Design: Moving away from the technological paradigm .. 136
3 A metaphor for the software process: Morphogenesis 136
 3.1 Emergence of software systems 137
 3.2 The human element as the substratum for the creation of processes ... 138
4 Conclusion .. 139

17 Hazards, self-organization, and risk compensation: A view of life at the edge 143
1 Introduction .. 144
2 Self-organized criticality ... 145
 2.1 Sandpiles .. 145
 2.2 Other self-organized systems 145
3 Risk compensation .. 147
 3.1 Risk compensation theories 147
 3.2 Risk compensation, adaptation and power laws 148
4 Hazards and the balancing act 148
 4.1 The Great Fire of London 149
 4.2 Deaths of four Army Ranger candidates 149
 4.3 Air traffic control .. 150
5 Statistics and indicators ... 150
6 Multifactor disasters ... 151
7 Risk compensation and progress 151
8 Summary .. 151

18 Structure formation by Active Brownian particles with nonlinear friction 153
1 Introduction .. 153
2 Self-moving particles ... 154
 2.1 Langevin equations .. 154
 2.2 Fokker-Planck equation 154
 2.3 Macroscopic approach 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Systems properties of metabolic networks</td>
<td>163</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>164</td>
</tr>
<tr>
<td>1.1</td>
<td>Enzymes</td>
<td>165</td>
</tr>
<tr>
<td>1.2</td>
<td>Problems in describing metabolism from the bottom up</td>
<td>166</td>
</tr>
<tr>
<td>2</td>
<td>Steady state of a metabolic network</td>
<td>168</td>
</tr>
<tr>
<td>2.1</td>
<td>Linear analysis</td>
<td>169</td>
</tr>
<tr>
<td>3</td>
<td>Metabolic control analysis</td>
<td>170</td>
</tr>
<tr>
<td>4</td>
<td>Feedback regulation</td>
<td>172</td>
</tr>
<tr>
<td>5</td>
<td>Large changes in metabolic rate</td>
<td>174</td>
</tr>
<tr>
<td>6</td>
<td>Hierarchical organisation of metabolism</td>
<td>174</td>
</tr>
<tr>
<td>20</td>
<td>Complex dynamics of molecular evolutionary processes</td>
<td>179</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>Biomolecules</td>
<td>181</td>
</tr>
<tr>
<td>2.1</td>
<td>RNA secondary structures and compatible sets</td>
<td>181</td>
</tr>
<tr>
<td>2.2</td>
<td>Covering sequence-space</td>
<td>183</td>
</tr>
<tr>
<td>3</td>
<td>Evolutionary dynamics</td>
<td>184</td>
</tr>
<tr>
<td>3.1</td>
<td>Neutral evolution</td>
<td>186</td>
</tr>
<tr>
<td>3.2</td>
<td>Adaption and error thresholds</td>
<td>187</td>
</tr>
<tr>
<td>4</td>
<td>Catalytic reaction networks</td>
<td>188</td>
</tr>
<tr>
<td>4.1</td>
<td>Hypercycles and parasites</td>
<td>189</td>
</tr>
<tr>
<td>4.2</td>
<td>Voyaging large catalytic nets</td>
<td>191</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>193</td>
</tr>
<tr>
<td>21</td>
<td>Genetic network inference</td>
<td>199</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>Methods</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td>201</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
<td>204</td>
</tr>
<tr>
<td>5</td>
<td>Abbreviations</td>
<td>206</td>
</tr>
<tr>
<td>22</td>
<td>Socioeconomic systems as complex self-organizing adaptive holarchies: The dynamic exergy budget</td>
<td>209</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>Efficiency and adaptability (hypercyclic and purely dissipative compartment)</td>
<td>212</td>
</tr>
<tr>
<td>3</td>
<td>The dynamic exergy budget</td>
<td>214</td>
</tr>
<tr>
<td>4</td>
<td>The scale issue: Environmental loading and need for adaptability</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>219</td>
</tr>
<tr>
<td>23</td>
<td>Socioeconomic systems as nested dissipative adaptive systems (holarchies) and their dynamic energy budget: Validation of the approach</td>
<td>223</td>
</tr>
<tr>
<td>1</td>
<td>Setting up the data base</td>
<td>224</td>
</tr>
</tbody>
</table>
1.1 Assessments of parameters needed to calculate BEP . . . 224
1.2 Conventional indicators of material standard of living and
socio-economic development. 225
2 BEP as an indicator of development for socioeconomic systems . . . 226
3 Existence of an internal set of constraints on the evolutionary pattern
of socio-economic systems . 228
4 Establishing links across levels to check the feasibility of future scenarios229
5 The demographic transition as a shift between two metastable equilib-
rium points of the dynamic energy budget 232

24 Psychology and corporations: A complex systems perspective 239
1 Introduction . 239
2 Organizations as currently organized 240
3 Using organizations to study complex systems 241
3.1 Cohesion and conformity in work group dynamics 241
4 Leadership as an emergent phenomenon 243
5 Conclusion: The need for a sufficiently rich complex systems perspective245

25 Symmetry breaking and the origin of life 249
1 Thermodynamics and dissipative systems 249
2 Statistical mechanics . 252
3 Cellular automata . 253

26 Complexity and functionality: A search for the where, the
when, and the how 259
1 Complexity with an attitude – but which one? 259
2 Reductionism . 260
3 In search for new laws . 263
4 Where and when and how . 264
5 From where to when . 265
6 From where and when to how . 266
7 Conclusion and outlook . 267

27 Biological design principles that guide self-organization, emer-
gence, and hierarchical assembly: From complexity to tenseg-
rity 269
1 Introduction . 270
2 Complexity in living systems . 271
3 Cellular tensegrity . 271
4 Mechanochemical control of biochemistry and gene expression 275
5 The architecture of life . 275
6 The evolution of form . 277
7 Conclusion: Simplicity in complexity . 278
28 Information transfer between solitary waves in the saturable Schrödinger equation

1. Introduction ... 282
2. Information transfer 283
3. Computational power 283
4. The NLS equation and its solutions 284
5. Information transfer in collisions of NLS solitary waves 285
6. Radiation ... 288
7. Physical realization 290
8. Conclusions ... 290

29 An integrated theory of nervous system functioning embracing nativism and constructivism

1. Introduction ... 295
2. Fundamentals of an integrated theory 296
 2.1 Algorithmic and constructivist approaches compared 296
 2.2 A third option 297
 2.3 Dynamical systems perspective 297
 2.4 The object-oriented programming architecture and other concepts from computer science 298
 2.5 Algorithms, mappings and order 299
 2.6 Relevance of hyperstructure theory 299
 2.7 Illustrative analogy 300
 2.8 Evolutionary aspect 300
3. The case of language 301
4. Diagrammatic representation of relationships discussed 302
5. Summary ... 302

30 Toward the physics of “death”

1. Introduction ... 305
2. Death .. 306
3. Levels of major complexity 307
4. Involution and levels of selection 315

31 Ragnar Frisch at the edge of chaos

1. Will capitalism collapse or equilibrate? 319
2. A shared judgement 321
3. Conclusions ... 324

32 Programming complex systems

1. Introduction ... 325
2. The lambda calculus 327
 2.1 Syntax ... 327
 2.2 Substitution 328
 2.3 Reduction .. 328
 2.4 Evaluation semantics 328
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Reference terms</td>
<td>329</td>
</tr>
<tr>
<td>3</td>
<td>The lambda-p calculus</td>
<td>329</td>
</tr>
<tr>
<td>3.1</td>
<td>Syntax</td>
<td>330</td>
</tr>
<tr>
<td>3.2</td>
<td>Syntactic identities</td>
<td>331</td>
</tr>
<tr>
<td>3.3</td>
<td>Reductions</td>
<td>332</td>
</tr>
<tr>
<td>3.4</td>
<td>Evaluation semantics</td>
<td>333</td>
</tr>
<tr>
<td>3.5</td>
<td>Observation</td>
<td>333</td>
</tr>
<tr>
<td>3.6</td>
<td>Observational semantics</td>
<td>333</td>
</tr>
<tr>
<td>3.7</td>
<td>Examples</td>
<td>333</td>
</tr>
<tr>
<td>4</td>
<td>The lambda-q calculus</td>
<td>334</td>
</tr>
<tr>
<td>4.1</td>
<td>Syntax</td>
<td>335</td>
</tr>
<tr>
<td>4.2</td>
<td>Syntactic identities</td>
<td>335</td>
</tr>
<tr>
<td>4.3</td>
<td>Reductions</td>
<td>336</td>
</tr>
<tr>
<td>4.4</td>
<td>Evaluation semantics</td>
<td>336</td>
</tr>
<tr>
<td>4.5</td>
<td>Observation</td>
<td>337</td>
</tr>
<tr>
<td>4.6</td>
<td>Observational semantics</td>
<td>337</td>
</tr>
<tr>
<td>4.7</td>
<td>Examples</td>
<td>337</td>
</tr>
<tr>
<td>5</td>
<td>Simulation to quantum computers</td>
<td>338</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>340</td>
</tr>
<tr>
<td>33</td>
<td>Towards the global: Complexity, topology and chaos in modelling, simulation and computation</td>
<td>343</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>343</td>
</tr>
<tr>
<td>2</td>
<td>Hierarchical efficiency</td>
<td>345</td>
</tr>
<tr>
<td>3</td>
<td>Topology induces complexity</td>
<td>346</td>
</tr>
<tr>
<td>4</td>
<td>Finite topology</td>
<td>347</td>
</tr>
<tr>
<td>5</td>
<td>Economics and politics</td>
<td>348</td>
</tr>
<tr>
<td>6</td>
<td>Complexity and chaos</td>
<td>350</td>
</tr>
<tr>
<td>7</td>
<td>Consequences</td>
<td>350</td>
</tr>
<tr>
<td>34</td>
<td>An effect of scale in a non-additive genetic model</td>
<td>357</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>357</td>
</tr>
<tr>
<td>2</td>
<td>Methods</td>
<td>358</td>
</tr>
<tr>
<td>2.1</td>
<td>The model</td>
<td>358</td>
</tr>
<tr>
<td>2.2</td>
<td>The experiment</td>
<td>359</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
<td>361</td>
</tr>
<tr>
<td>35</td>
<td>Parallel computational complexity in statistical physics</td>
<td>365</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>365</td>
</tr>
<tr>
<td>2</td>
<td>Parallel complexity theory</td>
<td>366</td>
</tr>
<tr>
<td>3</td>
<td>Example: Parallel algorithm and dynamic exponent for DLA</td>
<td>368</td>
</tr>
<tr>
<td>3.1</td>
<td>Parallel DLA algorithm</td>
<td>368</td>
</tr>
<tr>
<td>3.2</td>
<td>Determination of dynamic exponent</td>
<td>369</td>
</tr>
<tr>
<td>4</td>
<td>Summary</td>
<td>370</td>
</tr>
</tbody>
</table>
3.5 Rate equation analyses 419
3.6 Self-assembly with four part types 420
3.7 Encoding power of minus devices 421
4 A formal model 422
 4.1 Definition of self-assembling automata 423
 4.2 Construction of rule set 425
 4.3 Classes of self-assembling automata 427
 4.4 Minimum conformation SA 429
5 Summary 431

40 Aggregation and the emergence of social behavior in rat pups modeled by simple rules of individual behavior 433

1 Introduction 434
2 Basic strategy 435
 2.1 Experimental methods 435
 2.2 Basic model 437
3 Aggregation in autonomous individuals 441
4 The emergence of synchronized social behavior 443
 4.1 Evolutionary optimization 443
 4.2 Results 444
5 Mechanisms of aggregation 448
 5.1 Group thermotaxis 448
 5.2 Geotaxis 449
6 Conclusions 450

41 The role of information in simulated evolution 453

1 Introduction 453
2 The information hierarchy 455
3 The population level 455
 3.1 Information and robustness 458
4 The individual level 461
 4.1 The coding 461
 4.2 Information and the evaluation of structures 465
5 Discussion 470

42 Emergence of complex ecologies in ECHO 473

1 Motivation and context 473
2 The statistics 474
3 The ECHO model 475
4 Individual ECHO runs 479
5 Conclusion 483
43 Spatial correlations in the contact process: A step toward better ecological models 487
1 Introduction ... 487
2 Introduction to the contact process 489
3 Simulation details .. 489
4 Measures of heterogeneity ... 489
5 Theoretical predictions .. 492
6 Discussion .. 499
 6.1 Birthrate or density as independent variable? 499
 6.2 Spatial correlations near extinction 499

44 Many to one mappings as a basis for life 503
1 Criteria for life ... 503
2 The principle of many to one mapping 504
3 Many to one mappings in the origins of life and evolution of complex networks .. 504
4 Outlook ... 511

45 Generic mechanisms for hierarchies 513
1 Introduction .. 513
2 What is ‘discrete scale invariance’ 514
3 Properties ... 515
 3.1 Signature of DSI .. 515
 3.2 Importance and usefulness of DSI 516
 3.3 Prediction .. 516
4 Mechanisms leading to DSI and examples 516

46 Emergence in earthquakes 519
1 Introduction .. 519
2 Role of water and phase transformations 520
3 Consequences and predictions .. 521

47 Chemical oscillation in symbolic chemical system and its behavioral pattern 523
1 Introduction .. 523
2 Model ... 524
 2.1 Abstract rewriting system (ARS) 524
 2.2 ARMS .. 525
 2.3 How ARMS works .. 526
 2.4 Brusselator on ARMS .. 529
 2.5 On behavioral pattern of the system 532
3 Classification of behavioral pattern of ARMS 532
 3.1 Classification table of ARMS behavior 534
4 Condition of cycles emergence 536
 4.1 Mathematical background .. 536
5 Related work .. 537
48 Extinction dynamics in a large ecological system with random interspecies interactions 541
1 Introduction ... 542
2 Model ... 543
 2.1 Replicator equations with random interspecies interactions 543
 2.2 Introduction of the extinction threshold 544
3 Results .. 545
 3.1 Basin-size distribution 545
 3.2 Extinction curves ... 546
 3.3 Average fitness and the nature of the shrink matrix ... 548
4 Estimation of induction time 550
 4.1 Approximation 1 ... 550
 4.2 Approximation 2 ... 552
5 Discussion .. 553
49 Functional differentiation in developmental systems 557
1 Association and dissociation of system elements 557
2 Compatibility model .. 558
3 What parameters describe functions?—Life on the flow 562
4 Development of a system is a specialization of its elements 564
50 Tuning complexity on randomly occupied lattices 569
1 Introduction ... 569
2 Diversity and complexity 570
3 Tuning effect and critical probabilities 571
4 Scaling relations .. 573
5 Conclusion .. 576
51 Socioeconomic organization on directional resource landscapes 579
1 Introduction and motivation 580
2 Background and methodology 580
3 Spatially distributed agent model 582
 3.1 Production and consumption strategies 585
 3.2 Dimensional analysis 587
4 Results and discussion ... 589
52 “Continuous time” in Feigenbaum’s model 597
1 Introduction ... 597
2 Expressions with continuous parameter 598
3 The functions \mathcal{F}_λ for $\lambda = 2, 4$ 600
4 An application to fractals: Mandelbrot set 601
5 Conclusion and possible applications 601
53 Ordering chaos in a neural network with linear feedback 603
1 Introduction .. 604
2 System and analysis ... 604
3 Summary and conclusions 608

54 Self-organisation and information-carrying capacity of collectively autocatalytic sets of polymers: Ligation systems 613
1 Introduction .. 614
2 Dynamics of autocatalysis 614
3 Ligation/cleavage systems 616
 3.1 Binary systems ... 617
 3.2 Functional decomposition 619
4 Conclusion .. 621

55 Self-dissimilarity: An empirically observable complexity measure 625
1 Introduction .. 626
2 Self-dissimilarity .. 628
 2.1 Why might complex systems be self-dissimilar? 628
 2.2 Advantages of the approach 630
3 Probabilistic measures of self-dissimilarity 632
 3.1 Defining the structure at a scale 632
 3.2 Comparison to traditional methods of scaling 635
 3.3 Converting structures on different scales to the same scale .. 637
 3.4 Comparing structures on the same scale 638
4 Discussion .. 639
 4.1 Comparing structures when information is limited 639
 4.2 Features of the measure 640

56 Complexity and order in chemical and biological systems 645
1 Introduction .. 645
2 Order ... 646
3 Structural complexity of point systems 648
4 The simple molecules: ... 648
5 Wing patterns of the butterfly Bicyclus anynana 651