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A major open question of systems biology is how genetic and
molecular components interact to create phenotypes at the cellular
level. Although much recent effort has been dedicated to inferring
effective regulatory influences within small networks of genes, the
power of microarray bioinformatics has yet to be used to deter-
mine functional influences at the cellular level. In all cases of
data-driven parameter estimation, the number of model parame-
ters estimable from a set of data is strictly limited by the size of that
set. Rather than infer parameters describing the detailed interac-
tions of just a few genes, we chose a larger-scale investigation so
that the cumulative effects of all gene interactions could be
analyzed to identify the dynamics of cellular-level function. By
aggregating genes into large groups with related behaviors (me-
gamodules), we were able to determine the effective aggregate
regulatory influences among 12 major gene groups in murine B
lymphocytes over a variety of time steps. Intriguing observations
about the behavior of cells at this high level of abstraction include:
(i) a medium-term critical global transcriptional dependence on
ATP-generating genes in the mitochondria, (ii) a longer-term de-
pendence on glycolytic genes, (iii) the dual role of chromatin-
reorganizing genes in transcriptional activation and repression, (iv)
homeostasis-favoring influences, (v) the indication that, as a
group, G protein-mediated signals are not concentration-depen-
dent in their influence on target gene expression, and (vi) short-
term-activating�long-term-repressing behavior of the cell-cycle
system that reflects its oscillatory behavior.

module � network

S ince the advent of DNA microarray technology (1), various
efforts have been made to infer molecular network function

from array data. First, genes were clustered by similar responses
to perturbation (2–4), and genes in these expression clusters
were found to share cis-regulatory elements, providing a mo-
lecular basis for their similarity in expression behavior (5). To
determine the dynamics of regulatory networks, several reverse-
engineering approaches have been suggested: discrete networks,
linear models, Bayesian networks of dependencies, etc. (6–10).
Some successful inferences have been demonstrated for small
circuits (relatively low-dimensional subsystems) (6, 11, 12).
Additionally, genomic data have been integrated into models
based on experimental genetics (13). However, in organisms not
amenable to genetic manipulation, the possibility of obtaining a
phenomenological model of a genome-scale influence network
appears remote, due to noise in microarray studies (14) and the
large number of variables involved. Even assuming a linear
influence model, in which a vector of changes in n gene
expression levels Y at time t2 is determined by expression level
changes X at time t1 and a transition matrix M by Y � M�X, one
must solve for n � n influence variables in M. Thus for 104 genes
(and n2 � 108 influences), one would need 10,000 transitions or
perturbations for mathematical solubility, which is currently
beyond experimental capacity.

One way around this problem is to analyze the cell at a higher
level of abstraction, thereby reducing the number of variables. If
the modular hypothesis of network organization is at all valid,

then to the extent that genes combine to form minimodules of
insulated function (which in turn aggregate into meso- and
megamodules) (15), they form higher-level regulatory networks
with fewer interactions. The level of study can therefore be tuned
so that the set of effective interactions is mathematically soluble
given the data available (16). The effective regulatory influences
inferred based upon sequential observations do not represent
physical interactions and do not account for indirect effects, e.g.,
prior, intermediate, or parallel transitions that are always present
under the conditions observed. This study is no different from
others in that regard, although it uses a larger scale of analysis
than others, inferring regulatory networks from expression data.

Materials and Methods
Data from the Alliance for Cell Signaling (AfCS) splenic B
lymphocyte ligand screen (19) track the expression levels of
�16,000 cDNAs at time intervals of no delay and 0.5, 1, 2, and
4 h after perturbation by the addition of 1 of 32 ligands and
without perturbation as a control. Thus each gene is associated
with 33 expression-level time courses. To group the genes by
similar activity profiles, the 33 time courses were concatenated
to form an expression profile for each gene with 132 values,
which were allocated into 12 bins by profile similarity using the
self-organizing map (SOM) algorithm (17), as implemented in
the GEDI (16) software add-on to MATLAB (18). The centroid
profile of each bin was then used as the expression profile for
each of the gene groups.

To assign functions onto each of the gene groups, we used the
AfCS probe identifications to map Gene Ontology annotations
onto the gene names within each group. To identify large-scale
processes associated with gene groups, we sorted the 943 Process
(P) annotations into 39 categories. �2 analysis was used to
determine which P categories were overrepresented in which
gene groups. For greater resolution, we also performed the
analogous �2 test with the 943 P annotations uncategorized.

The 132-value profile data set was parsed into six different
profiles of 66 values, each containing an initial and final time
point for the 33 different ligand conditions. Using all combina-
tions of initial and final time points, we analyzed the following
transitions: 0.5 h (0.5 h initial to 1 h final), 1 h (1–2 h), 1.5 h (0.5–2
h), 2 h (2–4 h), 3 h (1–4 h), and 3.5 h (0.5–4 h).

The effective influence of gene group a on gene group b (�ab)
was determined for each of the 12 groups over the six different
time intervals by calculating the least-squares fit of the param-
eters �0a, �1a, . . . , �11a to the equations

xa,i,t�k � �0a x0,i,t � �1a x1,i,t � . . . � �aa xa,i,t � . . . � �11a x11,i,t

for all i, where xa,i,t�k is the expression level of group a at time
t�k (k is one of the six time intervals), and i is one of the 33 ligand
experiments. Systems of these 33 equations in the 12 parameters
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influencing a particular gene group are mutually independent
and were solved sequentially for each gene group to determine
144 influence coefficients.

These values were alternatively calculated by using a boot-
strapping methodology. For each bootstrap replicate, 12 of 33
experiments were chosen randomly, and the expression values
for each gene group at times t, and t�k, were used to solve 144
equations (12 equations, one for each gene group, are derived
from each of 12 experiments), for the 144 influence coefficients
simultaneously. Because the estimates of both the signs and
magnitudes of the coefficients were sensitive to which 12 exper-
iments were chosen in the bootstrap replicate (probably due to
a high degree of noise in the array data), the coefficients were
first normalized by the variance across the 144 coefficients and
then averaged over 2,800 bootstrap replicates. Therefore, using
the bootstrap analysis, each coefficient was represented by a
distribution of 2,800 estimates. t tests between these distributions
were performed in a pairwise manner for all coefficients to
calculate the P values shown in Fig. 3. The number of bootstrap
replicates was chosen for convergence in the P values.

Gene groups were grouped by similarity of either inputs (rows
of influence tables in Fig. 2) or outputs (columns) across all time
intervals by using distance-based clustering with correlation
coefficient as a distance metric. To gauge the relationships
between expression profile and input or output, the Euclidean
distance between each gene group’s vector of input (or output)
coefficients was calculated in a pairwise fashion. Similarly, the
Euclidean distance between the positions of all pairs of tiles in
the SOM analysis (equivalent to an a priori estimate of their
similarity) was calculated, as was the correlation coefficient
between all pairs of expression profiles, and the correlation
coefficient between these sets of distances was determined.

Results
We analyzed the gene expression data made available by the
AfCS, in which the response of murine B cells to 32 perturbations
was monitored over time (19). We present the effective influ-
ences among 12 megamodules and find that, even at this level of
aggregation, modules are significantly enriched for specific gene
functions, as annotated in the Gene Ontology database. At this
level of abstraction, cellular transcription behavior appears to be
dominated by three major influences: ATP generation and
consumption, the cell cycle, and the need to impose bounds on
the level of transcriptional activity.

Logarithmic changes in expression level of �15,000 genes at
0.5, 1, 2, and 4 h after the addition of a signaling ligand molecule
comprise the AfCS data. We used the SOM algorithm (17) to
reduce the number of unknown variables in the transition matrix
M from �225,000,000 (for n � 15,000) to 144 (n � 12). The SOM
uses the set of observed expression profile time courses to
generate an array of ‘‘representative time courses’’ that are
spatially related to each other (for example, a logarithmically
increasing time course would tend to occur adjacent to other
monotonically increasing profiles, and far from decreasing pro-
files). Other techniques have been used to reduce the number of
model parameters, in particular, singular value decomposition
(8, 10, 20) and principle component analysis (21). Our applica-
tion of SOM differs from these techniques in that it uses the full
set of available expression data to partition the genes into
similarly behaving but still mutually influencing aggregates,
rather than identifying the principal linear modes of variation.

Applying the SOM algorithm to the AfCS data yielded 12 groups
(in a 4 � 3 array) with characteristic gene expression time courses
across all time points of the 33 ligand experiments (see Tables 1 and
2, which are published as supporting information on the PNAS web
site). Associated with �5,000 genes in the AfCS database are
functional ontology labels that identify the cellular process(es) in
which each gene is involved. To uncover higher-level trends in the

function of each gene group, we sorted the 943 unique ontology
labels into 39 categories (see Table 3, which is published as
supporting information on the PNAS web site). Functional labels
associated with statistical significance (P value �0.0016) in genes of
a particular SOM group are shown in Fig. 1. Total categories
associated with each gene group are shown in italics, functions
overrepresented individually are in lowercase, and individual func-
tions contributing to a process category that was not overrepre-
sented as a whole appear in shaded boxes.

The gene expression levels that characterized each of the 12
SOM gene groups at a particular time step in the ligand
experiments were used to solve (using least-squared fitting and
bootstrap analysis; see Materials and Methods) for the effective
regulatory influences (M) that each gene group has over every
other gene group over that time step. These influences are
presented in Fig. 2. For a given time step, the value in the ith row
and jth column represents the effective influence of j on i, the
extent to which the presence of gene group j at the initial time
activates (green) or inhibits (red) the presence of gene group i
after the time step. Columns are sorted by the similarity of
outputs across all time intervals; rows are sorted by the similarity
of inputs (see Supporting Text, which is published as supporting
information on the PNAS web site).

To control for artifacts of the computational methods, we
randomized the order of expression values for each gene group
across all experiments and recalculated the influence coeffi-
cients (Fig. 2, R). The clear qualitative differences between this
table and the actual data indicate that the analysis reveals actual
patterns in the data. We also performed two stability analyses,
convergence and bootstrap resampling (see Supporting Text), to
verify that our results were not being overly influenced by a few
dominant observations.

The data generated from the bootstrapping analysis allowed us
to evaluate our confidence in each of the coefficient values; high
levels of confidence can be assigned to coefficients that are
calculated consistently across all bootstrap replicates. A pairwise
comparison among all influences reveals which are statistically
distinct. Fig. 3 shows the P values associated with the comparison
of the means of every pair of casual coefficients: red, P � 0.05;
yellow, 0.05 � P � 0.1; gray, P � 0.1. Rows and columns are given
in the ranked order of the influence’s average value over the
2,800 bootstrap replicates, arranged from most inhibiting to most
activating. The presence of gray block features along the diag-
onal indicates sets of influences that are not statistically distinct,
i.e., types of effectively equivalent influence, such as ‘‘weak
activator’’ or ‘‘weak repressor.’’

Fig. 2 provides a direct understanding of the coupling between
change in gene expression at one time and a later time, across a wide
variety of conditions. The coupling is summarized as a set of
effective influences. Among the interesting observations is the
possibility that a single gene group can effectively act as both an
activator and a repressor of another gene group, depending on
which time interval is analyzed. For example, an increase in gene
group 11 implies an increase in gene group 7 after 1.5 h but a
decrease after 2 h. The presence of activation and inhibition over
different times illustrates that, whereas the discrete time-step
influences are assumed to be linear, the separate treatment of each
time interval can reveal underlying biological nonlinearity. Several
biological mechanisms can explain this nonlinearity. Time delays in
influence may arise from the accumulation of transcription prod-
ucts to regulatory thresholds; if, for example, multiple other groups
mediate the effect of 11 on 7, then the earliest of these groups could
be activators and the later groups inhibitors. Alternatively, group
11’s activation of 7 could follow chemical equilibrium dynamics
where the accumulation of the ‘‘product,’’ gene group 7, eventually
acts to inhibit its own production; or the inhibition subsequent to
activation could reflect negative feedback serving to dampen global
transcriptional activity.
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The task of understanding the many effective influences is
simplified by the observation that, at a particular time, a gene group
generally up- or down-regulates transcription globally. For example,
group 11 is a global activator after 1.5 h and a global inhibitor after

2 h. This feature is manifest in the red and green columns of Fig.
2. At the longest time interval (3.5 h), however, groups 4 and 11 are
moderate activators of some gene groups while inhibiting others.
Despite these exceptions, the general tendency is striking.

Fig. 1. Gene ontology labels found in the SOM gene groups with strong statistical significance abundance (P � 0.0016). Uppercase italic letters indicate entire
overrepresented categories. Individual items are bulleted. Shaded boxes mark individually related processes whose category was not as a whole overrepresented.
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A possible explanation for the tendency of groups to have
uniform influences on all other groups is that there exist
processes in the cell that regulate transcriptional levels globally,
and the effect of each gene group on all other groups is
determined primarily by its effect on these upstream critical
processes. Several categories stand out as possible upstream
determinants of global transcription, in particular: transcription,
mRNA synthesis, nucleotide metabolism, nucleotide biosynthe-
sis, and aerobic respiration. If any of these act as global activators
of transcription, then their category presence will correlate with
a global transcription activating influence.

We calculated the mean global activating�inhibiting influence of
each gene group over each time interval (see Fig. 4b). Gene group
10 attained the greatest mean activating influence (5.59) over 2 h,
followed by groups 4 (3.45), 1 (3.35), 11 (3.11) over 1.5 h (see Fig.
4a), and 0 (3.05) over 1 h. The correlation between the fraction of
genes within a particular group dedicated to a process category and
these activating levels was highest for aerobic respiration (correla-
tion r � 0.471), followed by spindle�DNA repair (r � 0.424), and
chromatin (r � 0.420). Two of these processes are consistent with

the hypothesis of critical processes controlling global transcription;
aerobic respiration generates the ATP required for transcription,
and chromatin unpacking acetylases will open up major regions of
the DNA to transcriptional activation (22, 23).

DNA replication (r � 0.617) and chromatin (r � 0.419) were
the processes most correlated to inhibiting influences. It is not
surprising that these two groups were inhibitory in nature. For
example, DNA replication is a major ATP sink and is associated
with regulated repression of transcription (24), whereas the
chromatin category contains deacetylases, which are inhibitory
in nature (22, 25).

Interestingly, the presence of the G protein cascade category in
gene groups was anticorrelated to both strong activation (r �
�0.371) and repression (r � �0.209); generally, groups containing
many G protein-signaling genes never attained a strong regulatory
effect. This is reasonable, considering that as critical cell-surface
signaling molecules, G proteins are unlikely to function in a
concentration-limited manner. Thus, changes in their concentra-
tion should not greatly alter the expression of their target genes.

Discussion
The purpose of the megamodule level of description is not
microcausal relationships but rather an understanding of effec-
tive regulatory influences at the aggregate level. It is possible
that a ‘‘master-regulator’’ gene, or genes, with the ability to exert
genome-wide transcriptional influence (a sort of supertranscrip-
tion factor) could be present in each of the gene groups in low
numbers and thus not identified by our statistical tests. Although
we cannot strictly exclude the possibility that the above hypoth-
eses, e.g., ATP-limited transcriptional control, may be ad hoc
explanations, the sequential regulatory patterns we observe are

Fig. 2. Effective regulatory influences among the 12 gene groups arranged
by time step. The influence of gene group A on gene group B is given in the
Bth row, Ath column of each table. Red indicates an inhibitory influence,
green an activating one, with brighter values indicating stronger effects.
Influence tables are given for 0.5-, 1-, 1.5-, 2-, 3-, and 3.5-h transitions. The
order of rows is determined by clustering the gene groups by similarity of
input (row values) across all time steps; column order is clustered by output
similarity. R indicates a control analysis in which the order of gene expression
levels at the second time point was randomized.

Fig. 3. Pair-wise comparison of gene group regulatory influences. Plotted
are the P values associated with a pair-wise t test comparison of bootstrap
distributions for each coefficient across all 144 coefficients: red, P � 0.05;
yellow, P � 0.1; gray, P � 0.1. Coefficients are ordered from most inhibitory to
most activating. The top plot shows the value of each coefficient; red, inhi-
bition; green, activation; solid line indicates the position of ‘‘0’’ influence.
Dashed lines demarcate the boundaries of ‘‘influence types,’’ groups of coef-
ficients that are mutually statistically indistinguishable, e.g., lines 3 and 4
bound a type characterizable as ‘‘minimal effect.’’
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at play in mouse B cells, either as a direct or a secondary result
of the ontology content of each gene group. Moreover, it is
unlikely that a group of genes small enough to be statistically
anonymous could exert genome-wide influence dominant over
the summed influence of the �1,000 other genes in its coex-
pression group. Furthermore, for the hypothesis of ATP pro-
duction as a critical global determinant of transcriptional levels,
two complementary observations provide strong corroboration.
First, ATP-consuming behaviors that also inhibit transcription
(DNA replication and chromatin remodeling) are correlated to
strong inhibitory influence of a group. Second, aerobic respira-
tion, the ATP-generating process, is correlated with ubiquitous
transcriptional activation.

Analysis of the time courses of influence of each gene group
reveals that the majority of strong activating and inhibiting
influences occur over 1.5 or 2 h (see Fig. 4b). This observation
imposes a limit of 12 to 16 major transitions, or functional steps,
that can be made in 24 h (a cell-cycle duration typical of
eukaryotes).

It is notable that the strongest activating influences (�2.5)
occur almost exclusively in the 1.5-h time interval (see Fig. 4).
That there were no immediate (0.5-h) strong activating effects is

consistent with the hypothesis that activation is controlled by an
intermediate ATP-controlling step (e.g., aerobic respiration).
Gene group 10 is the strongest global activator of transcription;
yet the aerobic respiration category is not overrepresented in it.
However, two upstream processes are ‘‘glucose metabolism’’ and
‘‘glucose transport.’’ Thus, it is not surprising that the activating
influence of gene group 10 is delayed by 0.5 h.

Only one gene group (4) has a statistical overabundance of
cell-cycle-regulating genes (see Fig. 1). This group additionally
has a differential between strongest activating and inhibiting
influences second only to gene group 11 (see Fig. 4b). It is
possible that the inhibiting-activating-inhibiting temporal profile
of group 4 underlies an oscillatory behavior associated with the
cell cycle.

The data also supported the notion that when two gene groups
exhibit related expression profiles, they are also likely to be
under similar input regulation from the other gene groups.
Similarity in input vectors was correlated (r � 0.403) to the
pair-wise distance between two gene groups in the SOM array
(an a priori measure of expression profile relatedness) and even
more highly correlated (r � 0.650) to similarity in expression
profiles (rows in Fig. 2) (see Materials and Methods), suggesting

Fig. 4. Cellular regulatory influence diagrams. (a) A global comprehensive cellular influence network for the 1.5-h transition. Each gene group is represented
by its number, along with those ontology labels that are overrepresented in that gene group. Underlined labels are given when an entire function category is
overrepresented, and grayed labels when several individually related functions are each overrepresented, but the category is not. A green arrow connecting one
gene group to another indicates activation over 1.5 h, red arrows indicates repression, with brighter arrows indicating stronger effects. (b) The mean level of
gene group output influences across all 12 target groups is plotted versus the time step. Error bars are the standard error of the mean. Gene groups 9, 0, and
6 can be characterized as ‘‘very early activating’’ gene groups. Gene groups 3, 5, 1, 4, and 11 are ‘‘early activating;’’ groups 4 and 11 are also ‘‘long-term
repressors.’’ Groups 7, 10, 2, and 8 are ‘‘long-term activating.’’
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quite reasonably that similar regulatory inputs lead to similar
expression profiles.

Similarity in regulatory outputs is slightly anticorrelated to
similarity in expression profiles (for the expression profile and
SOM distance comparisons, r � �0.103 and r � �0.080,
respectively). This result can be explained by a cellular need to
maintain transcriptional homeostasis. If all gene groups that are
coexpressed similarly activate or inhibit global transcription, the
level of transcription would fluctuate wildly in an all-or-none
manner. Anticorrelation between expression profiles and func-
tional output means that whenever a particular activating force
is turned on, an antithetical inhibiting force will arise to maintain
relative homeostasis in global transcriptional levels.

An important aspect of obtaining the set of influences is the
possibility of predicting the outcomes of perturbations. We
found that the matrix of influences converges after fitting with
26 of 33 available perturbations (see Fig. 5, which is published as
supporting information on the PNAS web site). The ability to
predict the rest is demonstrated by the correlation of outputs
calculated from the matrix and the actual experimental obser-
vations which, e.g., for the 1.5-h transition, have a correlation of

0.993 (see Fig. 6, which is published as supporting information
on the PNAS web site).

Combining ontology and casual influence analysis allows one
to visualize the interaction of functions at the cellular level (see
Fig. 4a). This model is unique, because it is comprehensive in
describing all major cellular regulatory influences that occur
over a 1.5-h time step, and because it sets forth dozens of
experimentally falsifiable hypotheses. Although this analysis has
been performed at the megamodule level, this technique can
conceptually be used to infer all transcriptional interactions,
because its resolution is limited only by the number of time-step
experiments. Practically, however, to infer strictly linear effects
of every gene, given the levels of experimental noise in microar-
ray data would require �90,000 observations in mammalian
systems or 18,000 observations in yeast. Although these numbers
appear daunting, rapidly developing high-throughput automa-
tion techniques (26, 27) suggest that such an effort might soon
be feasible and economical.

We are indebted to E. Perlstein and J. Strader for helpful discussions and
critiques and to V. Vishwanath, G. Eichler, and T. Smith for help with
the Gene Ontology databases.
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